Refine Your Search

Topic

Author

Search Results

Technical Paper

Improving Emissions, Noise and Fuel Economy Trade-Off by using Multiple Injection Strategies in Diesel Low Temperature Combustion (LTC) Mode

2010-10-25
2010-01-2162
Latest emissions standards impose very low NOx and particle emissions that have led to new Diesel combustion operating conditions, such as low temperature combustion (LTC). The principle of LTC is based on enhancing air fuel mixing and reducing combustion temperature, reducing raw nitrogen oxides (NOx) and particle emissions. However, new difficulties have arisen. LTC is typically achieved through high dilution rates and low CR, resulting in increased auto-ignition delay that produces significant noise and deteriorates the combustion phasing. At the same time, lower combustion temperature and reduced oxygen concentration increases hydrocarbon (HC) and carbon oxide (CO) emissions, which can be problematic at low load. Therefore, if LTC is a promising solution to meet future emission regulations, it imposes a new emissions, fuel consumption and noise trade-off. For this, the injection strategy is the most direct mean of controlling the heat release profile and fuel air mixture.
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Journal Article

Optimization of a Euro 5 Vehicle Powered by an Ethanol Based Diesel Fuel

2010-05-05
2010-01-1520
Diversifying energy resources and reducing greenhouse gas emissions are key priorities in the forthcoming years for the automotive industry. Currently, among the different solutions, sustainable biofuels are considered as one of the most attractive answer to these issues. This paper deals with the vehicle application of an innovative diesel fuel formulation using Ethanol to tackle these future challenges. The main goal is to better understand the impact of using biofuel blends on engine behavior, reliability and pollutants emissions. This alternative oxygenated fuel reduces dramatically particulate matter (PM) emissions; this paves the way to improve the NOx/PM/CO₂ trade-off. Another major interest is to avoid adding a particulate filter in the exhaust line and to avoid modifying powertrain and vehicle hardware and therefore to minimize the overall cost to fulfill upcoming emission regulations.
Journal Article

Study of Air Entrainment of Multi-hole Diesel Injection by Particle Image Velocimetry - Effect of Neighboring Jets Interaction and Transient Behavior After End of Injection.

2010-04-12
2010-01-0342
The air entrainment of multi-hole diesel injection is investigated by high speed Particle Image Velocimetry (PIV) using a multi-hole common rail injector with an injection pressure of 100 MPa. The sprays are observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a diesel engine during injection. Typical ambient temperature of 800K and ambient density of 25 kg/m3 are chosen. The air entrainment is studied with the PIV technique, giving access to the velocity fields in the surrounding air and/or in the interior of two neighboring jets. High acquisition rate of 5000 Hz, corresponding to 200 μs between two consecutive image pairs is obtained by a high-speed camera coupled with a high-speed Nd:YLF laser. The effect of neighboring jets interaction is studied by comparing four injectors with different numbers of holes (4, 6, 8 and 12) with similar static mass flow rate per hole.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Matching and Evaluating Methods for Euro 6 and Efficient Two-stage Turbocharging Diesel Engine

2010-04-12
2010-01-1229
While fuel efficiency has to be improved, future Diesel engine emission standards will further restrict vehicle emissions, particularly of nitrogen oxides. Increased in-cylinder filling is recognized as a key factor in addressing this issue, which calls for advanced design of air and exhaust gas recirculation circuits and high cooling capabilities. As one possible solution, this paper presents a 2-stage boosting breathing architecture, specially dedicated to improving the trade-off between emissions and fuel consumption instead of seeking to improve specific power on a large family vehicle equipped with a 1.6-liter Diesel engine. In order to do it, turbocharger matching was specifically optimized to minimize engine-out NOx emissions at part-load and consumption under common driving conditions. Engine speed and load were analyzed on the European driving cycle. The key operating points and associated upper boundary for NOx emission were identified.
Technical Paper

Simulation of Urea-SCR Process Applied to Lean-burn SI Engines

2009-11-02
2009-01-2776
Lean-burn combustion in SI engines can significantly reduce fuel consumption but NOx reduction becomes challenging because classic three-way catalyst (TWC) is no more efficient. Urea-SCR is then an interesting alternative solution because of its high NOx conversion efficiency without any additional fuel consumption. The coupling between two SI lean-burn engines (stratified and homogeneous combustion) and a urea-SCR catalyst was simulated on the NEDC cycle. Simulation results showed that the SCR efficiency would comply with the limits required by future Euro 5/6 regulations. Associated urea solution consumptions were estimated thanks to a simplified model. Finally, a comparison with a Diesel application was also made. It showed that the required amount of reducing agent remained significantly higher for SI lean-burn engines than for Diesel engine.
Journal Article

Formation of Unburned Hydrocarbons in Low Temperature Diesel Combustion

2009-11-02
2009-01-2729
Low temperature combustion is a promising way to reach low NOx emissions in Diesel engines but one of its drawbacks, in comparison to conventional Diesel combustion is the drastic increase of Unburned Hydrocarbons (UHC). In this study, the sources of UHC of a low temperature combustion system were investigated in both a standard, all-metal single-cylinder Diesel engine and an equivalent optically-accessible engine. The investigations were conducted under low load operating conditions (2 and 4 bar IMEP). Two piston bowl geometries were tested: a wall-guided and a more conventional Diesel chamber geometry. Engine parameters such as the start of injection (SOI) timing, the level of charge dilution via exhaust gas re-circulation (EGR), intake temperature, injection pressure and engine coolant temperature were varied. Furthermore, the level of swirl and the diameter of the injector nozzle holes were also varied in order to determine and quantify the sources of UHC.
Journal Article

Cold Operation with Optical and Numerical Investigations on a Low Compression Ratio Diesel Engine

2009-11-02
2009-01-2714
With a high thermal efficiency and low CO2 (carbon dioxide) emissions, Diesel engines become leader of transport market. However, the exhaust-gas legislation evolution leads to a drastic reduction of NOx (nitrogen oxide) standards with very low particulate, HC (unburned hydrocarbons) and CO (carbon monoxide) emissions, while combustion noise and fuel consumption must be kept under control. The reduction of the volumetric compression ratio (CR) is a key factor to reach this challenge, but it is today limited by the capabilities to provide acceptable performances during very cold operation: start and idle below −10°C. This paper focuses on the understanding of the main parameter’s impacts on cold operation. Effects of parameters like hardware configuration and calibration optimization are investigated on a real 4 cylinder Diesel 14:1 CR engine, with a combination of specific advanced tools.
Technical Paper

SCR for Passenger Car: the Ammonia-Storage Issue on a Fe-ZSM5 Catalyst

2009-06-15
2009-01-1929
A comprehensive experimental approach has been developed for a Fe-ZSM5 micro-porous catalyst, through a collaborative project between IFP, PSA Peugeot-Citroën and the French Environment and Energy Management Agency (ADEME). Tests have first been conducted on a synthetic gas bench and yielded estimated values for the amount of NH3 stored on a catalyst sample. These data have further been compared to those obtained from an engine test bench, in running conditions representative of the entire operating range of the engine. 15 operating points have been chosen, considering the air mass flow and the exhaust temperature, and tested with different NH3/NOx ratios. Steady-state as well as transient conditions have been studied, showing the influence of three main parameters on the reductant storage characteristics: exhaust temperature, NO2/NOx ratio, and air mass flow.
Technical Paper

Ethanol as a Diesel Base Fuel: Managing the Flash Point Issue - Consequences on Engine Behavior

2009-06-15
2009-01-1807
Facing more and more stringent regulations, new solutions are developed to decrease pollutant emissions. One of them have shown promising and relevant results. It consists of the use of ethanol as a blending component for diesel fuel Nevertheless, the addition of ethanol to Diesel fuel affects some key properties such as the flash point. Consequently, Diesel blends containing ethanol become highly flammable at a temperature around ambient temperature. This study proposes to improve the formulation of ethanol based diesel fuel in order to avoid flash point drawbacks. First, a focus on physical and chemical properties is done for ethanol based diesel fuels with and without flash point improvement. Second, blends are tested on a passenger car diesel engine, under a wide operating range conditions from low load low speed up to maximum power. The main advantage of the ethanol based fuels generate low smoke level, that allows using higher EGR rate, thus leading to an important NOx decrease.
Journal Article

A Comparison of Combustion and Emissions Behaviour in Optical and Metal Single-Cylinder Diesel Engines

2009-06-15
2009-01-1963
Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study.
Journal Article

Advanced Injection Strategies for Controlling Low-Temperature Diesel Combustion and Emissions

2009-06-15
2009-01-1962
The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies.
Journal Article

A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry

2009-04-20
2009-01-0678
More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach.
Journal Article

Study of the Mixing and Combustion Processes of Consecutive Short Double Diesel Injections

2009-04-20
2009-01-1352
The mixing and combustion processes of short double Diesel injections are investigated by optical diagnostics. A single hole Common Rail Diesel injector allowing high injection pressure up to 120MPa is used. The spray is observed in a high pressure, high temperature cell that reproduces the thermodynamic conditions which exist in the combustion chamber of a Diesel engine during injection. Three configurations are studied: a single short injection serving as a reference case and two double short injections with short and long dwell time (time between the injections). Several optical diagnostics were performed successively. The mixing process is studied by normalized Laser Induced Exciplex Fluorescence giving access to the vapor fuel concentration fields. In addition, the flow fields both inside and outside the jets are characterized by Particle Imaging Velocimetry.
Technical Paper

Tracer LIF Visualisation Studies of Piston-Top Fuel Films in a Wall-Guided, Low-NOx Diesel Engine

2008-10-06
2008-01-2474
Tracer laser induced fluorescence (LIF) imaging of piston-top fuel films has been performed within the combustion chamber of an optically-accessible, single cylinder Diesel engine. The first objective of the study was to adapt the tracer LIF technique so as to perform in-cylinder imaging of the fuel films under reacting (i.e. combustion) conditions. The results obtained in a wall-guided, combustion chamber operating under highly dilute, Diesel low temperature combustion (LTC) conditions reveal the significant presence of late-cycle piston-top fuel films. Furthermore, it is believed that these fuel films contribute to engine-out hydrocarbon (HC) emissions via a mechanism of flash boiling. An attempt was also made to evaluate the role of fuel volatility on fuel film lifetimes. This was achieved by using a 50/50 fuel mixture of two single component fuels whose boiling points correspond to moderately high and low volatility components of standard Diesel fuel.
Technical Paper

A 3WCC Global Kinetic Model: A Calibration Method Using Laboratory Scale and Engine Test Bench Experiments

2008-04-14
2008-01-0453
A 3 way catalytic converter (3WCC) model based on a global kinetic model was developed and validated against laboratory scale and engine test bench experiments. Various equivalence ratios and temperatures were tested. A methodology was finalized and applied to calibrate the kinetic constants. Laboratory scale experiments were first used to characterize the reaction mechanism during light-off, including the way reduction and oxidation reactions begin and compete with each other when temperature increases. The numerical results are in good agreement with the laboratory scale light-off results. Also, when adapted to simulate the engine test bench experiments, the model is able to correctly reproduce both the light-off tests and the 3WCC conversion efficiency evolution versus equivalence ratio. A calibration method in two steps was thus established and successfully used. The combination of modeling with experimental work appeared to be a powerful tool to determine the reaction mechanism.
Journal Article

Cold Start on Diesel Engine: Is Low Compression Ratio Compatible with Cold Start Requirements?

2008-04-14
2008-01-1310
Future emission standards for Diesel engine will require a drastic reduction of engine-out NOx emissions with very low level of particulate matter (PM), HC and CO, and keeping under control fuel consumption and combustion noise. One of the most promising way to reach this challenge is to reduce compression ratio (CR). A stringent limitation of reducing Diesel CR is currently cold start requirements. Indeed, reduction of ambient temperature leads to penalties in fuel vaporization and auto ignition capabilities, even more at very low temperature (-20°C and below). In this paper, we present the work operated on an HSDI Common rail Diesel 4-cyl engine in three area: engine tests till very low temperature (down to -25°C); in cylinder imaging (videoscope) and CFD code development for cold start operation. First, combustion chamber is adapted in order to reach low compression ratio (CR 13.7:1).
Journal Article

Using Multiple Injection Strategies in Diesel Combustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off in Low CR Engines

2008-04-14
2008-01-1329
In former high compression ratio Diesel engines a single injection was used to introduce the fuel into the combustion chamber. With actual direct injection engines which exhibit a compression ratio between 17:1 and 18:1 single or multiple early injections called “pilot injections” are also added in order to reduce the combustion noise. For after-treatment reasons a late injection during the expansion stroke named “post injection” may also be used in some operating conditions. Investigations have been conducted on lower compression ratio Diesel engine and in high EGR rate operating conditions to evaluate the benefits of multiple injection strategies to improve the trade off between engine emissions, noise and fuel economy.
Journal Article

System Approach for Compliance with Full Load Targets on a Wall Guided Diesel Combustion System

2008-04-14
2008-01-0840
Low temperature combustion concept as HCCI is one of the most promising research ways to comply future emission regulations of Diesel passenger vehicles. IFP promoted this concept with NADI™ (Narrow Angle Direct Injection) combustion design whose original approach lies on a fuel spray guided by the bowl central tip to the re-entrant. For full load operating range, one of the key issue for success is to use as much as possible available air in the combustion chamber in order to reach low value of air fuel ratio, and therefore high value of specific power and specific torque. In this study, engine tests on a single cylinder engine with NADI™ concept are performed at full load; 3-D calculations as well as air/fuel mixing process visualizations in a constant volume vessel with optical access allowed to establish criteria for helping future combustion system design for full load operation.
X