Refine Your Search

Topic

Author

Search Results

Technical Paper

Analysis of Systematic Calibration of Heat Transfer Models on a Turbocharged GDI Engine Operating Map

2018-04-03
2018-01-0787
In order to simulate the working process, an accurate description of heat transfer occurring between in-cylinder gases and combustion chamber walls is required, especially regarding thermal efficiency, combustion and emissions, or cooling strategies. Combustion chamber wall heat transfer models are dominated by zero-dimensional semi-empirical models due to their good compromise between accuracy, complexity and computational efficiency. Classic models such as those from Woschni, Annand or Hohenberg are still widely used, despite having been developed on rather ancient engines. While numerous authors have worked on this topic in the past decades, little information can be found concerning the systematic calibration process of heat transfer models. In this paper, a systematic calibration method based on experimental data processing is tested on the complete operating map of a turbocharged GDI engine.
Technical Paper

Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine

2017-03-28
2017-01-0669
The current trend of downsizing used in gasoline engines, while reducing fuel consumption and CO2 emissions, imposes severe thermal loads inside the combustion chamber. These critical thermodynamic conditions lead to the possible auto-ignition (AI) of fresh gases hot-spots around Top-Dead-Center (TDC). At this very moment where the surface to volume ratio is high, wall heat transfer influences the temperature field inside the combustion chamber. The use of a realistic wall temperature distribution becomes important in the case of a downsized engine where fresh gases hot spots found near high temperature walls can initiate auto-ignition. This paper presents a comprehensive numerical methodology for an accurately prediction of thermodynamic conditions inside the combustion chamber based on Conjugate Heat Transfer (CHT).
Technical Paper

Experimental Study of Automotive Turbocharger Turbine Performance Maps Extrapolation

2016-04-05
2016-01-1034
Engine downsizing is potentially one of the most effective strategies being explored to improve fuel economy. A main problem of downsizing using a turbocharger is the small range of stable functioning of the turbocharger centrifugal compressor at high boost pressures, and hence the measurement of the performance maps of both compressor and turbine. Automotive manufacturers use mainly numerical simulations for internal combustion engines simulations, hence the need of an accurate extrapolation model to get a complete turbine performance map. These complete maps are then used for internal combustion engines calibration. Automotive manufacturers use commercial softwares to extrapolate the turbine narrow performance maps, both mass flow characteristics and the efficiency curve.
Technical Paper

System Optimization for a 2-Stroke Diesel Engine with a Turbo Super Configuration Supporting Fuel Economy Improvement of Next Generation Engines

2014-11-11
2014-32-0011
The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831. Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on a 2 cylinder 2-stroke 0.73L diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT).
Technical Paper

Improving Emissions, Noise and Fuel Economy Trade-Off by using Multiple Injection Strategies in Diesel Low Temperature Combustion (LTC) Mode

2010-10-25
2010-01-2162
Latest emissions standards impose very low NOx and particle emissions that have led to new Diesel combustion operating conditions, such as low temperature combustion (LTC). The principle of LTC is based on enhancing air fuel mixing and reducing combustion temperature, reducing raw nitrogen oxides (NOx) and particle emissions. However, new difficulties have arisen. LTC is typically achieved through high dilution rates and low CR, resulting in increased auto-ignition delay that produces significant noise and deteriorates the combustion phasing. At the same time, lower combustion temperature and reduced oxygen concentration increases hydrocarbon (HC) and carbon oxide (CO) emissions, which can be problematic at low load. Therefore, if LTC is a promising solution to meet future emission regulations, it imposes a new emissions, fuel consumption and noise trade-off. For this, the injection strategy is the most direct mean of controlling the heat release profile and fuel air mixture.
Journal Article

Computational Fluid Dynamics Calculations of Turbocharger's Bearing Losses

2010-05-05
2010-01-1537
Fuel consumption in internal combustion engines and their associated CO2 emissions have become one of the major issues facing car manufacturers everyday for various reasons: the Kyoto protocol, the upcoming European regulation concerning CO2 emissions requiring emissions of less than 130g CO2/km before 2012, and customer demand. One of the most efficient solutions to reduce fuel consumption is to downsize the engine and increase its specific power and torque by using turbochargers. The engine and the turbocharger have to be chosen carefully and be finely tuned. It is essential to understand and characterise the turbocharger's behaviour precisely and on its whole operating range, especially at low engine speeds. The characteristics at low speed are not provided by manufacturers of turbochargers because compressor maps cannot be achieve on usual test bench.
Journal Article

Understanding of the Internal Crack Phenomenon inside Diesel Particulate Filter during Regeneration Part 1: Modeling and Experiments

2010-05-05
2010-01-1555
This study deals with a coupled experimental and modeling approach of Diesel Particulate Filter cracking. A coupled model (heat transfer, mass transfer, chemical reactions) is used to predict the temperature field inside the filter during the regeneration steps. This model consists of assembled 1D models and is calibrated using a set of laboratory bench tests. In this set of experiments, laboratory scale filters are tested in different conditions (variation of the oxygen rate and gas flow) and axial/radial thermal gradient are recorded with the use of thermocouples. This model is used to build a second set of laboratory bench tests, which is dedicated to the understanding of the phenomena of Diesel Particulate Filter cracking.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Matching and Evaluating Methods for Euro 6 and Efficient Two-stage Turbocharging Diesel Engine

2010-04-12
2010-01-1229
While fuel efficiency has to be improved, future Diesel engine emission standards will further restrict vehicle emissions, particularly of nitrogen oxides. Increased in-cylinder filling is recognized as a key factor in addressing this issue, which calls for advanced design of air and exhaust gas recirculation circuits and high cooling capabilities. As one possible solution, this paper presents a 2-stage boosting breathing architecture, specially dedicated to improving the trade-off between emissions and fuel consumption instead of seeking to improve specific power on a large family vehicle equipped with a 1.6-liter Diesel engine. In order to do it, turbocharger matching was specifically optimized to minimize engine-out NOx emissions at part-load and consumption under common driving conditions. Engine speed and load were analyzed on the European driving cycle. The key operating points and associated upper boundary for NOx emission were identified.
Technical Paper

Energy Management of a High Efficiency Hybrid Electric Automatic Transmission

2010-04-12
2010-01-1311
The energy management of a hybrid vehicle defines the vehicle power flow that minimizes fuel consumption and exhaust emissions. In a combined hybrid the complex architecture requires a multi-input control from the energy management. A classic optimal control obtained with dynamic programming shows that thanks to the high efficiency hybrid electric variable transmission, energy losses come mainly from the internal combustion engine. This paper therefore proposes a sub-optimal control based on the maximization of the engine efficiency that avoids multi-input control. This strategy achieves two aims: enhanced performances in terms of fuel economy and a reduction of computational time.
Technical Paper

Optimal Design for a Highly Downsized Gasoline Engine

2009-06-15
2009-01-1794
The combination of air charging and downsizing is known to be an efficient solution to reduce CO2 emissions of modern gasoline engines. The decrease of the cubic capacity and the increase of the specific performance help to reduce the fuel consumption by limiting pumping and friction losses and even the losses of energy by heat transfer. Investigations have been conducted on a highly downsized SI engine to confirm if a strong decrease of the displacement (50 %) was still interesting regarding the fuel consumption reduction and if other ways were possible to improve further more its efficiency. The first aim of our work was to identify the optimal design (bore, stroke, displacement, …) that could maximize the consumption reduction potential at part load but also improve the engine's behaviour at very high load (up to 3.0 MPa IMEP from 1000 rpm). In order to do that, four engine configurations with different strokes and bores have been tested and compared.
Journal Article

A Comparison of Combustion and Emissions Behaviour in Optical and Metal Single-Cylinder Diesel Engines

2009-06-15
2009-01-1963
Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study.
Journal Article

Online Implementation of an Optimal Supervisory Control for a Parallel Hybrid Powertrain

2009-06-15
2009-01-1868
The authors present the supervisory control of a parallel hybrid powertrain, focusing on several issues related to the real-time implementation of optimal control based techniques, such as the Equivalent Consumption Minimization Strategies (ECMS). Real-time implementation is introduced as an intermediate step of a complete chain of tools aimed at investigating the supervisory control problem. These tools comprise an offline optimizer based on Pontryagin Minimum Principle (PMP), a two-layer real-time control structure, and a modular engine-in-the-loop test bench. Control results are presented for a regulatory drive cycle with the aim of illustrating the benefits of optimal control in terms of fuel economy, the role of the optimization constraints dictated by drivability requirements, and the effectiveness of the feedback rule proposed for the adaptation of the equivalence factor (Lagrange multiplier).
Journal Article

Advanced Injection Strategies for Controlling Low-Temperature Diesel Combustion and Emissions

2009-06-15
2009-01-1962
The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies.
Journal Article

Using Multiple Injection Strategies in Diesel Combustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off in Low CR Engines

2008-04-14
2008-01-1329
In former high compression ratio Diesel engines a single injection was used to introduce the fuel into the combustion chamber. With actual direct injection engines which exhibit a compression ratio between 17:1 and 18:1 single or multiple early injections called “pilot injections” are also added in order to reduce the combustion noise. For after-treatment reasons a late injection during the expansion stroke named “post injection” may also be used in some operating conditions. Investigations have been conducted on lower compression ratio Diesel engine and in high EGR rate operating conditions to evaluate the benefits of multiple injection strategies to improve the trade off between engine emissions, noise and fuel economy.
Journal Article

Reduction of the Compression Ratio on a HSDI Diesel Engine: Combustion Design Evolution for Compliance the Future Emission Standards

2008-04-14
2008-01-0839
Environment protection issues regarding CO2 emissions as well as customers requirements for fun-to-drive and fuel economy explain the strong increase of Diesel engine on European market share in all passenger car segments. To comply future purposes of emission regulations, particularly dramatic decrease in NOx emissions, technology need to keep upgrading; the reduction of the volumetric compression ratio (VCR) is one of the most promising research ways to allow a simultaneous increase in power at full load and NOx / PM trade-off improvement at part load. This study describes the combustion effects of the reduction of compression ratio and quantifies improvements obtained at full load and part load running conditions on a HSDI Common Rail engine out performance (power, fuel consumption, emissions and noise). Potential and limitations of a reduced compression ratio from 18:1 to 14:1 are underlined.
Technical Paper

Formulation of a One-Component Fuel Lumping Model to Assess the Effects of Fuel Thermodynamic Properties on Internal Combustion Engine Mixture Preparation and Combustion

2004-06-08
2004-01-1996
A lumping model has been formulated to calculate the thermodynamic properties required for internal combustion engine multidimensional computations, including saturation pressure, latent heat of vaporization, liquid density, surface tension, viscosity, etc. This model consists firstly in reducing the analytical data to a single (i.e. pure) pseudo-component characterized by its molecular weight, critical pressure and temperature, and acentric factor. For a gasoline fuel, the required analytical data are those provided by gas chromatography. For a Diesel fuel, the required data are a true boiling point (TBP) distillation curve and the fuel density at a single temperature. This model provides a valuable tool for studying the effects of fuel physical properties upon the behavior of a vaporizing spray in a chamber, as well as upon direct injection gasoline and Diesel engines using the multidimensional (3D) KMB code.
Technical Paper

Development of the High Power NADI™ Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions

2002-05-06
2002-01-1744
Due to their high thermal efficiency coupled with low CO2 emissions, Diesel engines are promised to an increasing part of the transport market if their NOx and particulate emissions are reduced. Today, adequate after-treatments, NOx and PM traps are under industrialization with still concerns about fuel economy, robustness, sensitivity to fuel sulfur and cost because of their complex and sophisticated strategy. New combustion process such as Homogeneous Charge Compression Ignition (HCCI) are investigated for their potential to achieve near zero particulate and NOx emissions. Their main drawbacks are too high hydrocarbons (HC) and carbon monoxide (CO) emissions, combustion control at high load and then limited operating range and power output. As an answer for challenges the Diesel engine is facing, IFP has developed a combustion system able to reach near zero particulate and NOx emissions while maintaining performance standards of the D.I Diesel engines.
Technical Paper

Fuel Additive Performance Evaluation for Volume Production Application of a Diesel Particulate Filter

2001-03-05
2001-01-1286
Diesel particulate filter (DPF) technology is becoming increasingly established as a practical method for control of particulate emissions from diesel engines. In the year 2000, production vehicles with DPF systems, using metallic fuel additive to assist regeneration, became available in Europe. These early examples of first generation DPF technology are forerunners of more advanced systems likely to be needed by many light-duty vehicles to meet Euro IV emissions legislation scheduled for 2005. Aspects requiring attention in second generation DPF systems are a compromise between regeneration kinetics and ash accumulation. The DPF regeneration event is activated by fuel injection, either late in the combustion cycle (late injection), or after normal combustion (post injection), leading to increased fuel consumption. Therefore for optimum fuel economy, the duration of regeneration and/or the soot ignition temperature must be minimised.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
X