Refine Your Search



Search Results

Technical Paper

Exploring and Modeling the Chemical Effect of a Cetane Booster Additive in a Low- Octane Gasoline Fuel

Novel combustion systems such as SACI (Spark Assisted Compression Ignition), GCI (Gasoline compression combustion) or lean combustion concepts are being developed for better performances. These combustion systems share a common objective : control the reactivity in order to have a proper combustion phasing and to lower emissions. Fuel additives have been used for decades to enhance combustion properties. However, their chemical effects is not fully understood especially when considering novel combustion systems. In order to evaluate the additive use approach, this study proposes a 0D simulation regarding the reactivity effect of a widely known diesel additive : 2-ethylhexylnitrate.
Technical Paper

Water Injection to Improve Direct Injection Spark Ignition Engine Efficiency

The increasing use of downsized turbocharged gasoline engines for passengers cars and the new European homologation cycles (WLTC and RDE) both impose an optimization of the whole engine map. More weight is given to mid and high loads, thus enhancing knock and overfueling limitations. At low and moderate engine speeds, knock mitigation is one of the main issues, generally addressed by retarding spark advance thereby penalizing the combustion efficiency. At high engine speeds, knock still occurs but is less problematic. However, in order to comply with thermo-mechanical properties of the turbine, excess fuel is injected to limit the exhaust gas temperature while maximizing engine power, even with cooled exhaust manifolds. This also implies a decrease of the combustion efficiency and an increase in pollutant emissions. Water injection is one way to overcome both limitations.
Technical Paper

Detonation Peninsula for TRF-Air Mixtures: Assessment for the Analysis of Auto-Ignition Events in Spark-Ignition Engines

Controlling abnormal auto-ignition processes in spark-ignition engines requires understanding how auto-ignition is triggered and how it propagates inside the combustion chamber. The original Zeldovich theory regarding auto-ignition propagation was further developed by Bradley and coworkers, who highlighted different modes by considering various hot spot characteristics and thermodynamic conditions around them. Dimensionless parameters (ε, ξ) were then proposed to classify these modes and to define a detonation peninsula for H2-CO-air mixtures. This article deals with numerical simulations undertaken to check the relevancy of this original detonation peninsula when considering realistic gasoline fuels. 1D calculations of auto-ignition propagation are performed using the Tabulated Kinetics for Ignition model.
Technical Paper

Experimental and Numerical Analysis of Diluted Combustion in a Direct Injection CNG Engine Featuring Post- Euro-VI Fuel Consumption Targets

The present paper is concerned with part of the work performed by Renault, IFPEN and Politecnico di Torino within a research project founded by the European Commission. The project has been focused on the development of a dedicated CNG engine featuring a 25% decrease in fuel consumption with respect to an equivalent Diesel engine with the same performance targets. To that end, different technologies were implemented and optimized in the engine, namely, direct injection, variable valve timing, LP EGR with advanced turbocharging, and diluted combustion. With specific reference to diluted combustion, it is rather well established for gasoline engines whereas it still poses several critical issues for CNG ones, mainly due to the lower exhaust temperatures. Moreover, dilution is accompanied by a decrease in the laminar burning speed of the unburned mixture and this generally leads to a detriment in combustion efficiency and stability.
Technical Paper

Experimental Investigation of Novel Ammonia Mixer Designs for SCR Systems

Meeting Euro 6d NOx emission regulations lower than 80 mg/km for light duty diesel (60 mg/km gasoline) vehicles remains a challenge, especially during cold-start tests at which the selective catalyst reduction (SCR) system does not work because of low exhaust gas temperatures (light-off temperature around 200 °C). While several exhaust aftertreatment system (EATS) designs are suggested in literature, solutions with gaseous ammonia injections seem to be an efficient and cost-effective way to enhance the NOx abatement at low temperature. Compared to standard SCR systems using urea water solution (UWS) injection, gaseous NH3 systems allow an earlier injection, prevent deposit formation and increase the NH3 content density. However non-uniform ammonia mixture distribution upstream of the SCR catalyst remains an issue. These exhaust gas/ NH3 inhomogeneities lead to a non-optimal NOx reduction performance, resulting in higher than expected NOx emissions and/or ammonia slip.
Technical Paper

Combustion Optimization of a Multi-Cylinder CI Engine Running with a Low RON Gasoline Fuel Considering Different Air Loop and After-Treatment Configurations

Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in compression ignition engines. In this context, low research octane number (RON) gasoline, a refinery stream derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. In addition, thanks to its higher H/C ratio and energy content compared to diesel, CO2 benefits are also expected when used in such engines. In previous studies, different cetane number (CN) fuels have been evaluated and a CN 35 fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern and nozzle design have been performed on a single cylinder compression-ignition engine.
Technical Paper

Diesel Oxidation Catalyst and HC Investigations of a Low RON Gasoline Fuel in a Compression Ignition Engine

Fuels from crude oil are the main energy vector used in the worldwide transport sector. But conventional fuel and engine technologies are often criticized, especially Diesel engines with the recent “Diesel gate”. Engine and fuel co-research is one of the main leverage to reduce both CO2 footprint and criteria pollutants in the transport sector. Compression ignition engines with gasoline-like fuels are a promising way for both NOx and particulate emissions abatement while keeping lower tailpipe CO2 emissions from both combustion process, physical and chemical properties of the low RON gasoline. To introduce a new fuel/engine technology, investigation of pollutants and After-Treatment Systems (ATS) is mandatory. Previous work [1] already studied soot behavior to define the rules for the design of the Diesel Particulate Filter (DPF) when used with a low RON gasoline in a compression ignition engine.
Technical Paper

The Impact of Intake Valve Dynamics on Knock Propensity in a Dual-Fuel SI Engine

In this study, the impact of the intake valve timing on knock propensity is investigated on a dual-fuel engine which leverages a low octane fuel and a high octane fuel to adjust the fuel mixture’s research octane rating (RON) based on operating point. Variations in the intake valve timing have a direct impact on residual gas concentrations due to valve overlap, and also affect the compression pressure and temperature by altering the effective compression ratio (eCR). In this study, it is shown that the fuel RON requirement for a non-knocking condition at a fixed operating point can vary significantly solely due to variations of the intake valve timing. At 2000 rpm and 6 bar IMEP, the fuel RON requirement ranges from 80 to 90 as a function of the intake valve timing, and the valve timing can change the RON requirement from 98 to 104 at 2000 rpm and 14 bar IMEP.
Technical Paper

Low RON Gasoline Calibration on a Multi-Cylinder Compression Ignition Engine to Fulfill the Euro 6d Regulation

Reducing the CO2 footprint, limiting the pollutant emissions and rebalancing the ongoing shift demand toward middle-distillate fuels are major concerns for vehicle manufacturers and oil refiners. In this context, gasoline-like fuels have been recently identified as good candidates. Straight run naphtha, a refinery stream derived from the atmospheric crude oil distillation process, allows for a reduction of both NOx and particulate emissions when used in compression-ignition engines. CO2 benefits are also expected thanks to naphtha’s higher H/C ratio and energy content compared to diesel. In previous studies, wide ranges of Cetane Number (CN) naphtha fuels have been evaluated and CN 35 naphtha fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern, nozzle design and air-path technology, have been performed on a light-duty single cylinder compression-ignition engine.
Technical Paper

A Fully-Analytical Fuel Consumption Estimation for the Optimal Design of Light- and Heavy-Duty Series Hybrid Electric Powertrains

Fuel consumption is an essential factor that requires to be minimized in the design of a vehicle powertrain. Simple energy models can be of great help - by clarifying the role of powertrain dimensioning parameters and reducing the computation time of complex routines aiming at optimizing these parameters. In this paper, a Fully Analytical fuel Consumption Estimation (FACE) is developed based on a novel GRaphical-Analysis-Based fuel Energy Consumption Optimization (GRAB-ECO), both of which predict the fuel consumption of light- and heavy-duty series hybrid-electric powertrains that is minimized by an optimal control technique. When a drive cycle and dimensioning parameters (e.g. vehicle road load, as well as rated power, torque, volume of engine, motor/generators, and battery) are considered as inputs, FACE predicts the minimal fuel consumption in closed form, whereas GRAB-ECO minimizes fuel consumption via a graphical analysis of vehicle optimal operating modes.
Journal Article

Simulation and Optical Diagnostics to Characterize Low Octane Number Dual Fuel Strategies: a Step Towards the Octane on Demand Engine

Reduction of CO2 emissions is becoming one of the great challenges for future gasoline engines. Downsizing is one of the most promising strategies to achieve this reduction, though it facilitates occurrence of knocking. Therefore, downsizing has to be associated with knock limiting technologies. The aim of the current research program is to adapt the fuel Research-Octane-Number (RON) injected in the combustion chamber to prevent knock occurrence and keep combustion phasing at optimum. This is achieved by a dual fuel injection strategy, involving a low-RON naphtha-based fuel (Naphtha, RON 71) and a high-RON octane booster (Ethanol, RON107). The ratio of fuel quantity on each injector is adapted to fit the RON requirement as a function of engine operating conditions. Hence, it becomes crucial to understand and predict the mixture preparation, to quantify its spatial and cycle-to-cycle variations and to apprehend the consequences on combustion behavior - knock especially.
Technical Paper

Potential of CN25 Naphtha-Based Fuel to Power Compression Ignition Engines

Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in Diesel engines. In this context, straight-run naphtha, a refinery stream directly derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. The current study is one step further toward naphtha-based fuel to power compression ignition engines. The potential of a cetane number 25 fuel (CN25), resulting from a blend of hydro-treated straight-run naphtha CN35 with unleaded non-oxygenated gasoline RON91 was assessed. For this purpose, investigations were conducted on multiple fronts, including experimental activities on an injection test bed, in an optically accessible vessel and in a single cylinder engine. CFD simulations were also developed to provide relevant explanations.
Journal Article

Using Ethanol’s Double Octane Boosting Effect with Low RON Naphtha-Based Fuel for an Octane on Demand SI Engine

The efficiency of spark ignition (SI) engines is usually limited by the occurrence of knock, which is linked to fuel octane number. If running the engine at its optimal efficiency requires a high octane number at high load, a lower octane number can be used at low load. Saudi Aramco, along with its long-term partner IFP Energies nouvelles, has been developing a synergistic fuel engine system where the engine is fed by fuel with an octane number adjusted in real time, on an as needed basis, while running at its optimal efficiency. Two major steps are identified to develop this “Octane on Demand” (OOD) concept: First, characterize the octane requirement needed to run the engine at its optimal efficiency over the entire map. Then, select the best dual fuel combination, including a base fuel and an octane booster to fit this concept.
Technical Paper

Innovative Approach and Tools to Design Future Two-Wheeler Powertrain

As congestion increases and commute times lengthen with the growing urbanization, many customers will look for effective mobility solutions. Two-wheeler are one of the solutions to deal with these issues, in particular if equipped with electrified powertrains for minimized local noise and air pollutant emissions. Scooters powertrain technology is predominantly based on Spark Ignition Engine (ICE) associated with a Continuously Variable Transmissions (CVT) and a Centrifugal Clutch. Nevertheless, even though CVT gives satisfaction in simplicity, fun to drive, cost effectiveness and vehicle dynamics, its efficiency is an undeniable drawback. Indeed, a conventional CVT is wasting more than 50% of ICE effective power in customer driving conditions. Consequently, those vehicles have high fuel consumption relative to their size, and are equipped with overpowered and heavy internal combustion engines, allowing a large area for further improvements.
Technical Paper

An ICE Map Generation Tool Applied to the Evaluation of the Impact of Downsizing on Hybrid Vehicle Consumption

Legal constraints concerning CO2 emissions have made the improvement of light duty vehicle efficiency mandatory. In result, vehicle powertrain and its development have become increasingly complex, requiring the ability to assess rapidly the effect of several technological solutions, such as hybridization or internal combustion engine (or ICE) downsizing, on vehicle CO2 emissions. In this respect, simulation is nowadays a common way to estimate a vehicle's fuel consumption on a given driving cycle. This estimation can be done with the knowledge of vehicle main characteristics, its transmission ratio and efficiency and its internal combustion engine fuel consumption map. While vehicle and transmission parameters are relatively easy to know, the ICE consumption map has to be obtained through either test bench measurements or computation.
Technical Paper

Oxidation Stability of Diesel/Biodiesel Blends: Impact of Fuels Physical-Chemical Properties over Ageing During Storage and Accelerated Oxidation

Current and future engine technologies and fuels are mutually dependent. The increased use of alternative fuels has been linked to deterioration in performance of injectors, fuel filters and engines as a result of insoluble deposit formation. The present work aimed to study the impact of Diesel/biodiesel blends formulation (biodiesel feedstock and content) and temperature on the oxidation stability based on total acid number (TAN). The biofuels used in the fuel matrix were: rapeseed, soy and palm methyl esters (RME, SME and PME respectively). The Diesel/biodiesel blends were made with 0%v/v, 5%v/v, 10% v/v and 20%v/v of biodiesel blended with additive-free new Diesel. The oxidation stability of Diesel/biodiesel blends was to evaluate during 6 months fuels storage, under 20°C and 40°C, and fuels severe oxidation into a reactor vessel to better understand the parameters leading to fuel oxidation on-board.
Technical Paper

Potential of Naphtha-like Fuel on an Existing Modern Compression Ignition Engine

Recent work has demonstrated the potential of gasoline-like fuels to reduce NOX and particulates emissions when used in diesel engines. Indeed, fuels highly resistant to auto-ignition provide more time for fuel and air mixing prior to the combustion and therefore a more homogeneous combustion. Nevertheless, major issues still need to be addressed, particularly regarding UHC and CO emissions at low load and particulate/noise combustion trade-off at high load. The purpose of this study is to investigate how an existing modern diesel engine could be operated with low-cetane fuels and define the most appropriate Cetane Number (CN) to reduce engine-out emissions. With this regard, a selection of naphtha and gasoline blends, ranging from CN30/RON 57 to CN35/RON 41 was investigated on a Euro 5, 1.6L four-cylinder engine. Results were compared to the conventional diesel running mode using a minimum NOX level oriented calibration, both in steady state and transient conditions.
Technical Paper

System Optimization for a 2-Stroke Diesel Engine with a Turbo Super Configuration Supporting Fuel Economy Improvement of Next Generation Engines

The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831. Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on a 2 cylinder 2-stroke 0.73L diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT).
Journal Article

Stabilization of Highly Diluted Gasoline Direct Injection Engine using Innovative Ignition Systems

Dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In this context, influence of innovative ignition systems on the dilution acceptance of a 400cc optical GDI engine has been studied. Several systems were tested and compared to a conventional coil: a dual-coil system and two nanosecond scaled plasma generators. Two operating points were studied: 2.8bar IMEP (net) at 2000rpm and 9bar IMEP (net) at 1200rpm. Two diluents were evaluated: real EGR and air (lean combustion). High-speed imaging at frequency up to 10kHz was performed to visualize both spark and combustion initiation and propagation. Voltage and current were measured to infer the energy deposited in the spark plug gap. The dual-coil DCO™ system and the nanosecond multi-pulse plasma generator at their maximum power showed an ability to extend the dilution range of the engine.
Journal Article

On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load

EGR dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In particular, at high load, it is very efficient in mitigating knock at low speed and to decrease exhaust temperature at high speed so that fuel enrichment can be avoided. The objective of this paper is to better understand the governing mechanisms implied in EGR-diluted SI combustion at high load. For this purpose, measurements were performed on a modern, single-cylinder GDI engine (high tumble value, multi-hole injector, central position). In addition 0-D and 1-D Chemkin simulations (reactors and flames) were used to complete the engine tests so as to gain a better understanding of the physical mechanisms. EGR benefits were confirmed and characterized at 19 bar IMEP: net ISFC could be reduced by 17% at 1200rpm and by 6% at 5000rpm. At low speed, knock mitigation was the main effect, improving the cycle efficiency by a better combustion phasing.