Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Numerical Analysis of Carbon Monoxide Formation in DME Combustion

2011-11-08
2011-32-0632
Dimethyl ether (DME) is an oxygenated fuel with the molecular formula CH₃OCH₃, economically produced from various energy sources, such as natural gas, coal and biomass. It has gained prominence as a substitute for diesel fuel in Japan and in other Asian countries, from the viewpoint of both energy diversification and environmental protection. The greatest advantage of DME is that it emits practically no particulate matter when used in compression ignition (CI) engine. However, one of the drawbacks of DME CI engine is the increase carbon monoxide (CO) emission in high-load and high exhaust gas circulation (EGR) regime. In this study, we have investigated the CO formation characteristics of DME CI combustion based on chemical kinetics.
Technical Paper

Experimental and Numerical Analysis of High Pressure DME Spray

2010-04-12
2010-01-0880
DME has lower energy content per unit volume than that of light oil (typical petroleum based diesel fuel). Roughly 1.8 times the quantity of DME is required to obtain equivalent content of light oil. DME also exhibits higher compressibility and much lower viscosity than light oil, so high pressure injection is not easy. Currently, DME engines have utilized a larger injection volume by enlarging the nozzle diameter with a relatively low injection pressure up to 60MPa. In order to obtain higher performance in future DME engines, high pressure fuel injection is considered essential, however the high pressure DME spray characteristics have not yet been understood. In this research, DME spray characteristics of high injection pressure up to 140MPa were examined using a constant volume vessel under engine-like temperature/pressure conditions.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

Investigation of the Combustion Process of a DI CI Engine Fueled with Dimethyl Ether

2001-09-24
2001-01-3504
Dimethyl Ether (DME) is one of the major candidates for the next generation fuel for compression ignition (CI) engines. It has good self-ignitability and would not produce particulate, even at rich conditions. DME has proved to be able to apply to ordinary diesel engines with minimal modifications, but its combustion characteristics are not completely understood. In this study, the behavior of a DME spray and combustion process of a direct injection CI engine fueled with DME was investigated by combustion observation and in-cylinder gas sampling. To distinguish evaporated and non-evaporated zones of a spray, direct and schlieren imaging were carried out. The sampled gas from a DME spray was analyzed by gas chromatography, and the major intermediate product histories during ignition period were analyzed.
Technical Paper

Performance and Emissions of a DI Diesel Engine Operated with LPG and Ignition Improving Additives

2001-09-24
2001-01-3680
This research investigated the performance and emissions of a direct injection (DI) Diesel engine operated on 100% butane liquid petroleum gas (LPG). The LPG has a low cetane number, therefore di-tertiary-butyl peroxide (DTBP) and aliphatic hydrocarbon (AHC) were added to the LPG (100% butane) to enhance cetane number. With the cetane improver, stable Diesel engine operation over a wide range of the engine loads was possible. By changing the concentration of DTBP and AHC several different LPG blended fuels were obtained. In-cylinder visualization was also used in this research to check the combustion behavior. LPG and only AHC blended fuel showed NOX emission increased compared to Diesel fuel operation. Experimental result showed that the thermal efficiency of LPG powered Diesel engine was comparable to Diesel fuel operation. Exhaust emissions measurements showed that NOX and smoke could be considerably reduced with the blend of LPG, DTBP and AHC.
Technical Paper

DME Fuel Blends for Low-Emission, Direct-Injection Diesel Engines

2000-06-19
2000-01-2004
Based on the knowledge that cavitation in a nozzle enhances the atomization of fuel spray, fuel modification is conducted by blending Dimethyl Ether (DME). Because the boiling point of DME is -24.8°C, it may easily take place during the cavitation in an injection nozzle. Furthermore, there is a soot reduction effect caused by the oxygenated fuels. The oxygen content in the DME is 34.8%, which accelerates soot reduction in the combustion chamber. The experimental results are compared with those of DiMethoxyMethan (Methylal: DMM), a blend of gas-oil. The ignition temperatures of DME and DMM are 235°C and 236°C, the boiling temperatures of DME and DMM are -24.8°C and 42.1°C, and the oxygen contents of DME and DMM are 34.8% and 42.1%, respectively. In addition to the oxygenated fuel, a propane blend of gas-oil was also used as a blended fuel in order to examine the effects of the boiling point and oxygen content of the fuel.
Technical Paper

Experimental Study of CI Natural-Gas/DME Homogeneous Charge Engine

2000-03-06
2000-01-0329
In this study, a homogeneous mixture of natural-gas and air was used in a compression ignition engine to reduce NOx emissions and improve thermal efficiency. In order to control ignition timing and combustion, a small amount of DME was mixed with the natural-gas. Engine performance and the exhaust characteristics were investigated experimentally. Results show the following: the engine can run over quite a large load range if a certain amount of DME is added into natural-gas. By optimizing the proportion of DME to natural-gas, NOx emissions can be lowered to near zero levels if the mixture is lean enough. Thermal efficiency is higher than that obtained with normal diesel fuel operation.
Technical Paper

Performance of NOX Catalyst in a DI Diesel Engine Operated with Neat Dimethyl Ether

1999-10-25
1999-01-3599
An experiment was conducted with a direct injection Diesel engine operated with neat dimethyl ether (DME). Main focus of this research is to investigate the performance of the catalysts designed for NOx reduction, such as Co–alumina and Sn–alumina catalysts, for the reduction of NOX and other unburned species contained in the exhaust gas. In the experiments, DME concentration in the exhaust gas was changed by adding extra DME before the catalytic reactor, which is the important experimental parameter in the research. Results showed that NOX reduction rate was not so high without any DME addition, because the content of unburned DME, reducing agent, is very low in the DME engine exhaust gas. However, NOX reduction rate increased with increase in DME content and it reached around 80% with enough DME addition. The NOX reduction rate increased with increase in reaction temperature up to around 300 °C.
Technical Paper

Direct Injection Diesel Engine Operated with Propane - DME Blended Fuel

1998-10-19
982536
A novel way of using low-cetane-number petroleum gases in a compression ignition (CI) engine is introduced, by directly injecting blends of such fuels with dimethyl ether (DME), a high-cetane-number alternative fuel for low soot emissions. This method both extends advantages of DME and complements its deficiency. Although DME mixes with most hydrocarbon fuels in any ratio, in order to demonstrate the feasibility of the new method and facilitate the analysis, DME-propane blends were investigated in a direct injection CI engine. Some findings of the study are listed. In the engine operated by DME and propane blends, there was no need for significantly increasing the complexity of the fuel system than that employed in the use of neat DME. For the same reason, this method eliminates or minimizes cumbersome hardware necessary when the said gaseous fuels are separately introduced in CI engines.
Technical Paper

Engine Performance and Exhaust Characteristics of Direct-injection Diesel Engine Operated with DME

1997-10-01
972973
Neat dimethyl ether (DME), as an alternative fuel candidate for Diesel engines, was investigated by measuring primarily engine performance and exhaust gas characteristics. In addition, other responses of the engine to the new fuel were also determined at the same time, including the injector needle lift and heat release. The engine measurements with this fuel were compared with those obtained by using conventional Diesel fuel. Findings from the present work include: (1) It was necessary to add a small amount of lubricating additives to DME, if a conventional fuel injection system is employed.
Technical Paper

Comparative Investigation on Fuel Feed Methods in Two-Stroke Cycle Methanol Engine

1992-10-01
922312
A direct fuel-injection two-stroke cycle engine operated with neat methanol was investigated. The engine performance, combustion and exhaust-gas characteristics were analyzed experimentally and compared for operation with a carburetor, EFI injection at the intake manifold, and EFI injection at the scavenging port. The power and the brake thermal efficiency of the direct fuel-injection engine were higher than those of engines operated with a carburetor and either of the two EFI methods. The exhausted unburnt fuel of the direct fuel-injection engine was lower than that for operation with a carburetor, and formaldehyde and the CO concentration were of the same level as for operation with the carburetor and EFI methods. The NOx concentration of the direct fuel-injection was half the level of the result of carburetor operation.
X