Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Effect of Olefin Content in Gasoline on Knock Characteristics and HCHO Emission in Lean Burn Spark Ignition Engine

2023-09-29
2023-32-0083
In transportation sector, higher engine thermal efficiency is currently required to solve the energy crisis and environmental problems. In spark ignition (SI) engine, lean-burn strategy is the promising approach to improve thermal efficiency and lower emissions. Olefins are the attractive component for gasoline additives, because they are more reactive and have advantage in lean limit extension. However, owing to lower research octane number (RON), it is expected to exhibit the drawback to reducing the anti-knock performance. The experiments were performed using a single-cylinder engine for 6 fuel types including gasoline blends which have difference in RON varying between 90.4 and 100.2. The results showed that adding olefin content to the premium gasoline provided unfavorable effect on auto-ignition as the auto-ignition happened at unburned gas temperature of 808 K which was 52 K lower at excess air of 2.0. Thus, it reduced anti-knock performance.
Technical Paper

Real World Emissions Analysis Using Sensor-based Emissions Measurement System for Light-duty Direct-Injection Gasoline Vehicle

2022-03-29
2022-01-0572
In recent years, particulate matter (PM) emitted from direct-injection gasoline vehicles is becoming an increasingly concerning problem. In addition, it is often reported that ammonia (NH3) is emitted from gasoline vehicles equipped with a three-way catalyst. These emissions might be largely emitted especially when driving in on-road driving conditions. In this study, we investigated the emissions, NOx, NH3, and PM/PN (particulate number) of a light-duty direct-injection gasoline vehicle when driving on actual roads. Using a small direct-injection gasoline vehicle equipped with a three-way catalyst, experiment was conducted 8 times on the same route, and these emissions were measured. In this study, vehicle specific power (VSP) was introduced, which can be calculated using vehicle parameters, vehicle speed, and road gradient. The effects of parameters acquired through on-board diagnostics (OBD) port and VSP on emissions were investigated.
Technical Paper

Real-World Emission Analysis Methods Using Sensor-Based Emission Measurement System

2020-04-14
2020-01-0381
Every year, exhaust gas regulations are getting stricter with the intention to solve the average air pollution problem, however, local roadside pollution is still a pressing issue. In order to solve this local roadside pollution problem, it is necessary to evaluate and/or predict “where” and “how much” pollutants such as NOx are emitted. To predict the local roadside pollution, it is necessary to collect emissions data from various kinds of vehicles driving on real-world and analyze them. In recent years, Real Driving Emission regulations using PEMS (Portable Emission Measurement System) have been introduced mainly in Europe. A typical PEMS configuration can weigh close to 100 kg however, and its weight affects the driving conditions of vehicles running on actual roads. In this study, we focused on the analysis of real-world emissions using SEMS (Sensor-based Emission Measurement System).
Journal Article

Kinetic Modeling Study of NOx Conversion Based on Physicochemical Characteristics of Hydrothermally Aged SCR/DPF Catalyst

2017-10-08
2017-01-2386
Diesel engines have better fuel economy over comparable gasoline engines and are useful for the reduction of CO2 emissions. However, to meet stringent emission standards, the technology for reducing NOx and particulate matter (PM) in diesel engine exhaust needs to be improved. A conventional selective catalytic reduction (SCR) system consists of a diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and urea-SCR catalyst. Recently, more stringent regulations have led to the development of SCR systems with a larger volume and increased the cost of such systems. In order to solve these problems, an SCR catalyst-coated DPF (SCR/DPF) is proposed. An SCR/DPF system has lower volume and cost compared to the conventional SCR system. The SCR/DPF catalyst has two functions: combustion of PM and reduction of NOx emissions.
Technical Paper

Measurement of Sound Speed in DME in a Wide Range of Pressure and Temperature Including the Critical Point

2016-10-17
2016-01-2258
Dimethyl ether (DME) is a promising alternative fuel for compression ignition (CI) engines. DME features good auto ignition characteristics and soot-free combustion. In order to develop an injection system suitable for DME, it is necessary to understand its fuel properties. Sound speed is an important fuel property that affects the injection characteristics. However, the measurement data under high-pressures corresponding to those in fuel injection systems are lacking. The critical temperature of DME is lower than that of diesel fuel, and is close to the injection condition. It is important to understand the behavior of the sound speed around the critical point, since the sound speed at critical point is extremely low. In this study, sound speed in DME in a wide pressure and temperature range of 1 MPa to 80 MPa, 298.15 K to 413.15 K, including the vicinity of the critical point, was measured. The sound speed in DME decreases as either the pressure falls or the temperature rises.
Journal Article

High-Speed Observation and Modeling of Dimethyl Ether Spray Combustion at Engine-Like Conditions

2015-09-01
2015-01-1927
Dimethyl Ether (DME) is one of the major candidates for the alternative fuel for compression ignition (CI) engines. However, DME spray combustion characteristics are not well understood. There is no spray model validated against spray experiments at high-temperature and high-pressure relevant to combustion chambers of engines. DME has a lower viscosity and lower volumetric modulus of elasticity. It is difficult to increase injection pressure. The injection pressure remains low at 60 MPa even in the latest DME engine. To improve engine performance and reduce emissions from DME engines, establishing the DME spray model applicable to numerical engine simulation is required. In this study, high-speed observation of DME sprays at injection pressures up to 120 MPa with a latest common rail DME injection system was conducted in a constant volume combustion vessel, under ambient temperature and pressure of 6 MPa-920 K.
Journal Article

Ignition Characteristics of 2,5-Dimethylfuran Compared with Gasoline and Ethanol

2015-09-01
2015-01-1806
2,5-dimethylfuran (DMF) and 2-methylfuran (MF) have attracted attention as new biofuels. To utilize furans as alternative fuels, fundamental studies on the combustion characteristics are required. In this study, the ignition delay times of DMF were measured using a rapid compression machine and compared with those of gasoline and ethanol. To investigate the effect of the addition of DMF to gasoline, the ignition delay times of DMF-gasoline surrogate fuel blends were also measured. The ignition delay times of DMF were longer than those of gasoline and shorter than those of ethanol. The simulation results using the DMF kinetic model were in reasonable agreement with those of the experiments.
X