Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of an Analytical Method for Rear Differential Gear Whine Noise utilizing Principal Component Contribution by OTPA and CAE

2019-06-05
2019-01-1555
Due to the global warming concern, CO2 emission regulations have been reinforced in most countries and electrification of automobiles has accelerated. Since the engine noise will be largely reduced, the improvements of gear whine noise becomes more important. But gear whine noise mechanism is complicated by involving many parts and transmitting paths to the cabin. Operational Transfer Path Analysis (OTPA) is one of the TPA methods to determine the main path and contributing part using only the operational data. However, in cases which many reference points are set on the same frame or body, the contribution becomes similar by high correlation among the reference data set and finding out the main transfer part becomes difficult. The contribution of principal component (PC) which is obtained from the correlated reference signals, instead of calculating the contribution from each reference point by modifying the OTPA process, has been utilized.
Technical Paper

Thermal Management of a Hybrid Vehicle Using a Heat Pump

2019-04-02
2019-01-0502
This paper presents the thermal management of a hybrid vehicle (HV) by using a heat pump system in cold weather. The advantage of an HV is a high efficiency of the vehicle system since an electric motor and an engine are coupled and optimally controlled. However, in the conventional HV, we see the fuel economy degradation in cold weather because delivering heat to the passenger cabin by using an engine results in a low efficiency of the vehicle system. To improve the fuel economy degradation, in this study, a heat pump is used and combined with an engine for the thermal management. The heat pump with an electrically driven compressor pumps heat from ambient into a water-cooled condenser. The heat which is generated by the engine and the heat pump is delivered to the engine and the passenger cabin because the engine needs to warm up quickly to reduce the emission and the cabin needs heat for thermal comfort.
Technical Paper

A Study of Triple Skyhook Control for Semi-Active Suspension System

2019-04-02
2019-01-0168
The research described in this paper focused on improving occupant ride comfort and road holding by suppressing sprung and unsprung vibration using a semi-active suspension system. It has been reported that occupants tend to perceive vertical vibrations in a frequency range between 4 and 8 Hz as uncomfortable (described below as the “mid-frequency range”). Previous research into semi-active suspension system has focused on reducing vibration in this mid-frequency range, as well as close to the sprung resonance frequency of between 1 and 2 Hz. Skyhook damper (SH) control is a typical ride comfort control used to damp vibration close to the sprung resonance frequency. However, since SH control is not capable of damping vibration in the mid-frequency range, the shock absorbers are configured with a lower damping factor. This helps to achieve a good balance between reducing vibration close to the sprung mass resonance and in the mid-frequency range.
Technical Paper

Development of TLP-AI Technology to Realize High Temperature Operation of Power Module

2019-04-02
2019-01-0607
Application of SiC power devices is regarded as a promising means of reducing the power loss of power modules mounted in power control units. Due to those high thermostable characteristics, the power module with SiC power devices are required to have higher operating temperature than the conventional power module with Si power devices. However, the limitations of current packaging technology prevent the utilization of the full potential of SiC power devices. To resolve these issues, the development of device bonding technology is very important. Although transient liquid phase (TLP) bonding is a promising technology for enabling high temperature operation because its bonding layer has a high melting point, the characteristics of the TLP bonding layer tend to damage the power devices. This paper describes the development of a bonding technology to achieve high temperature operation using a stress reduction effect.
Technical Paper

Development of Strength Distributed Hot Stamp Parts

2019-04-02
2019-01-0522
1 Structural parts, such as the center pillar, are a multi-layer structure. They are a combination of high-strength panels and high-toughness panels, to control the deformation mode during a crash. If we can make this multi-layered structure as one panel, consisting of different hardness within it, we will be able to make a lightweight part. In this study, we have developed a method to fabricate a ‘lightweight center pillar’ with the following processes. First, the whole panel is hardened by quenching within the hot stamp process. Next, certain areas of the panel are softened by partial tempering. We have found that the temperature zone for softening is between A1 and A3, and it is easy to perform a rapid and accurate tempering by utilizing induction heating around the Curie temperature between A1 and A3 transformation temperature.
Technical Paper

Fatigue Life Prediction Method for Self-Piercing Rivets Considering Crack Propagation

2019-04-02
2019-01-0531
This paper describes a numerical prediction method for fatigue strength of Self Piercing Rivets (SPRs) using fracture mechanics. Recently, high strength steels and non-ferrous metals have been adopted to light weight automotive bodies. Various types of joining are proposed for multi-material bodies. It is important to predict the fatigue life of these joints using numerical simulation. However, the fatigue strength of these joints is related to sheet thickness, base materials, and loading conditions. Therefore, a large number of coupon tests are necessary to determine the S-N curve for the fatigue life prediction of joints in the automotive body. To reduce the amount of coupon testing, numerical simulation will be an efficient method in obtaining the S-N curve of these joints. The fatigue fracture process consists of two stages, crack initiation and crack growth. There are many studies about crack growth estimation methods using stress intensity factor.
Technical Paper

A Target Cascading Method Using Model Based Simulation in Early Stage of Vehicle Development

2019-04-02
2019-01-0836
In the early stages of vehicle development, it is important for decision makers to understand a feasible constraint region that satisfies all system level requirements. The purpose of this paper is to propose a target cascading method to solve for a feasible design region which satisfies all constraints of the system based on model based simulation. In this method, the feasible design region is explored by using both global optimization methods and active learning techniques. In optimization problems, the inverse problem for understanding feasibility for specific designs is defined and solved. To determine the objective functions of the inverse problem, an index representing the achievement level of constraints from system requirements is introduced. To predict feasible regions in the specific design space, a surrogate model of minimized values of the index is trained by using a kriging model.
Technical Paper

New Method to Achieve High Hydraulic Pressure and Improved Gear Pump Performance in Active Height Control (AHC) System

2019-04-02
2019-01-0854
Vehicle weight reduction is becoming more and more important as increasingly stringent fuel economy regulations are introduced around the world. This development improved the hydraulic gear pump performance of the next-generation Active Height Control (AHC) suspension and achieved significant weight reduction of 5 kg by eliminating the auxiliary pump accumulator. To realize the necessary high-pressure with a high flow rate, the sealing performance of the pump at the tips of the gear teeth is very important. This was achieved by developing “breaking-in” technology that shaves away the aluminum housing using the gear teeth and creates zero clearance between the teeth tips and the housing. To reduce the frictional loss torque of the pump, which was identified as an issue of this technology, it was necessary to completely shave away the initial clearance in the breaking-in process.
Technical Paper

Research of Knocking Deterioration due to Accumulated Carbon Deposits on Piston Surfaces

2019-04-02
2019-01-1141
The quantity of heavy components in fuel is increasing as automotive fuels diversify, and engine oil formulations are becoming more complex. These trends result in the formation of larger amounts of carbon deposits as reaction byproducts during combustion, potentially worsening the susceptibility of the engine to knock [1]. The research described in this paper aimed to identify the mechanism that causes knocking to deteriorate due to carbon deposits in low to medium engine load ranges, which are mainly used when the vehicle drives off and accelerates. With this objective, the cylinder temperature and pressure with and without deposits were measured, and it was found that knocking deteriorates in a certain range of ignition timing.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Highly decorative, lightweight flexible solar cells for automotive applications

2019-04-02
2019-01-0863
In 2012, the U.S. Environmental Protection Agency and National Highway Traffic Safety Administration laid down strict standards for CO2 emissions and improved fuel economy for light-duty vehicles covering the model years 2017 to 2025. In order to meet the requirement, it is essential to develop an alternative power source for the future cars. Power generation by solar cells/modules is a promising renewable energy candidate because the most environmentally friendly vehicles such as electric vehicles and plug-in hybrid vehicles are equipped with large-capacity batteries that can be charged with electricity generated by solar cells/modules. In this study, we developed a simple lift-off process for producing colorful, light-weight, and flexible Cu(In,Ga)Se2 (CIGS) solar cells for automotive application.
Technical Paper

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Technical Paper

Piston Detergency and Anti-Wear Performance of Non-Phosphorus and Non-Ash Engine Oil

2019-01-15
2019-01-0021
The deposition of ash derived from engine oil on the surface of diesel particle filters (DPF) has recently been reported to degrade the performance of the DPF. It is generally known that phosphorus in engine oil is adsorbed on the surface of an automotive exhaust catalyst, reducing the performance of the catalyst. Thus, the amounts of ash and phosphorus in engine oil have been decreased. We have developed a non-phosphorus, non-ash engine oil (NPNA) that does not contain metal-based detergents or zinc dialkyldithiophosphate (ZnDTP). Various engine tests were performed, and we confirmed that under normal running conditions, the NPNA oil had a sufficiently high piston detergency and wear resistance-two important requirements for engine oil-to meet current American and Japanese standards. However, the piston detergency of NPNA required further improvement when engine running conditions were more severe.
Technical Paper

Development of Three-Way Catalysts Enhanced NOx Purifying Activity

2018-04-03
2018-01-0942
Growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. One of the key technologies is a new OSC material that has low surface area (SA) and high OSC performance. We enhanced the pyrochlore- ceria/zirconia (CZ) which has a very small SA. In order to enhance the heat resistance and promote the OSC reaction, we selected and optimized the additive element. This material showed high OSC performance especially in the temperature range of 400 degrees or less. Another key technology is washcoat structure that has high gas diffusivity by making connected pore in the washcoat (New pore forming technology).
Technical Paper

Development of CFD Inverse Analysis Technology Targeting Heat or Concentration Performance Using the Adjoint Method and Its Application to Actual Components

2018-04-03
2018-01-1033
To resolve two major problems of conventional CFD-based shape optimization technology: (1) dependence of the outcome on the selection of design parameters, and (2) high computational costs, two types of innovative inverse analysis technologies based on a mathematical theory called the Adjoint Method were developed in previous studies for maximizing an arbitrary hydrodynamic performance aspect as the cost function: surface geometry deformation sensitivity analysis to identify the locations to be modified, and topology optimization to generate an optimal shape. Furthermore, these technologies were extended to transient flows by the application of the transient Adjoint Method theory. However, there are many cases around flow path shapes in vehicles where performance with respect to heat or concentration, such as the total amount of heat transfer or the flow rate of a specific gas component, is very important.
Technical Paper

Development of New Continuously Variable Transmission for 2.0-Liter Class Vehicles

2018-04-03
2018-01-1062
Toyota has developed a new continuously variable transmission (CVT) called "Direct Shift-CVT" which is for 2.0-liter class vehicles. This CVT provided not only power transmission by a metal belt held with a conventional pulley but also additional gear mechanism. This CVT is developed to improve fuel efficiency, acceleration characteristic, and quietness. At this CVT, the startup low gear ratio is achieved by gear mechanism and the power is switched by clutches. Since the belt-pulley portion can be realized to be wide range by using only high gear ratio range, the input load into belt-pulley portion is reduced and unprecedented compact and high efficient belt-pulley portion is established. Consequently, the high efficiency in all fields from startup acceleration to high speed driving is achieved to improve fuel efficiency.
Technical Paper

Update of the WorldSID 50th Male Pelvic Injury Criterion and Risk Curve

2018-04-03
2018-01-0539
Petit et al. 2015 and Lebarbé et al. 2016 reported on two studies where the injury mechanism and threshold of the sacroiliac joint were investigated in two slightly oblique crash test conditions from 18 Post Mortem Human Subjects (PMHS) tests. They concluded that the sacroiliac joint fractures were associated with pubic rami fractures. These latter being reported to occur first in the time history. Therefore it was recommended not to define a criterion specific for the sacroiliac joint. In 2012, injury risk curves were published for the WorldSID dummy by Petitjean et al. For the pelvis, dummy and PMHS paired tests from six configurations were used (n = 55). All of these configurations were pure lateral impacts. In addition, the sacroiliac joint and femur neck loads were not recorded, and the dummy used was the first production version (WorldSID revision 1). Since that time, the WorldSID was updated several times, including changes in the pelvis area.
Technical Paper

Development of a New 6-Speed FWD Manual Transmission

2018-04-03
2018-01-0392
Environmental awareness has increased on a global scale which pushed for a heavier demand for weight reduction and high transmission efficiency on manual transmissions (hereafter referred to as the “MT”) in improving vehicle driving and fuel economy performance. Comfortable shift feel is also continuously in demand by the customer because its sensitive performance can be directly recognized by the driver which may determine the transmission’s merchantability. The newly developed 6-speed MT (hereafter referred to as the “6MT”) has achieved size reduction (compact size), weight reduced, better fuel efficiency, and improvement in the shift feel which will continue to maintain its’ competitiveness in the future.
Technical Paper

A Java Implementation of Future Automotive Systems Technology Simulator (FASTSim) Fuel Economy Simulation Code Modules

2018-04-03
2018-01-0412
Future Automotive Systems Technology Simulator (FASTSim) is a free and open-source tool developed by National Renewable Energy Lab (NREL). Among the attractive capabilities of the FASTSim is that it can perform computationally efficient fuel economy simulations of automotive vehicles with reasonable accuracy for standard or arbitrary drive cycles. The modeling capability includes vehicles with various types of powertrains such as: conventional vehicles (CVs), hybrid-electric vehicles (HEVs), plugin hybrid electric vehicles (PHEVs) and battery-only electric vehicles (BEVs). The public version of FASTSim available from NREL is implemented in Excel, which achieves the goal of good accessibility to a broad audience, but has some limitations, including: i) bottleneck in computations when importing arbitrary drive cycles, ii) slower computations in general than other scripting or programming languages, and iii) less portable to integration with other applications and/or other platforms.
Technical Paper

Rubber Suspension Bushing Model Identified by General Design Parameters for Initial Design Phase

2018-04-03
2018-01-0693
This paper proposes a rubber suspension bushing model considering amplitude dependence as a useful tool at the initial design phase. Experiments were carried out to verify several dynamic characteristics of rubber bushings under vibration up to a frequency of 100 Hz, which is an important frequency range when designing ride comfort performance. When dynamic characteristic theory and the geometrical properties of the force-displacement characteristic curve were considered using these dynamic characteristics as assumptions, an equation was derived that is capable of calculating the dynamic stiffness under an arbitrary amplitude by identifying only two general design parameters (dynamic stiffness and loss factor) under a reference amplitude. The rubber suspension bushing model was then constructed by transforming this equation. Two verifications were carried out to confirm that the model is capable of reproducing measured bushing characteristics.
X