Refine Your Search

Topic

Search Results

Technical Paper

Experimental and Modeling Investigation of NO Formation Mechanism for Biodiesel and Its Blend with Methanol

2019-04-02
2019-01-0217
Biodiesel makes an attractive option to replace fossil diesel owing to its applicability in diesel engines without major modifications. An increase in NO emissions with biodiesel compared to diesel is a major concern for its wider use. Blending alcohols, such as methanol, with biodiesel is a potential remedy to mitigate NO formation, as suggested by experiments. However, computational investigations studying the effect of biodiesel-methanol blends on NO formation are scarce. A combined experimental and computational approach is adopted here to investigate the NO formation mechanism with neat biodiesel and biodiesel-methanol blend fueled light duty diesel engine. Firstly, a new compact kinetic model is utilized consisting of oxidation reactions for methyl butanoate and n-dodecane as a surrogate for biodiesel. A surrogate is defined to represent biodiesel based on a combined property and functional group based approach.
Technical Paper

Development of a Polymer Electrolyte Membrane Fuel Cell Stack for a Range Extender for Electric Vehicles

2019-01-09
2019-26-0087
Severe air pollution in cities caused largely by vehicular emissions, which requires urgent remedial measures. As automobiles are indispensable modes of personal and public mobility, pre-emptive efforts are necessary to reduce the adverse effects arising from their operation. A significant improvement in air quality can be achieved through large-scale introduction of vehicles with extremely low emission such as hybrid-electric and zero emission vehicles. Range extension of electric vehicles (EVs) is also of utmost importance to alleviate the handicap of restricted mileage of purely plug-in EVs as compared to conventional vehicles. This paper presents development of a polymer electrolyte membrane (PEM) fuel cell stack used for the range extender electric vehicles. The Fuel cell stack for range extender vehicle operated in a dead end mode using hydrogen and air as open cathode.
Technical Paper

An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines

2018-04-03
2018-01-0240
Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers.
Technical Paper

Effect of Fuel Injector Location and Nozzle-Hole Orientation on Mixture Formation in a GDI Engine: A CFD Analysis

2018-04-03
2018-01-0201
Gasoline direct injection (GDI) engines have gained popularity in the recent times because of lower fuel consumption and exhaust emissions compared to that of the conventional port fuel injection (PFI) engine. But, in these engines, the mixture formation plays an important role which affects combustion, performance and emission characteristics of the engine. The mixture formation, in turn, depends on many factors of which fuel injector location and orientation are most important parameters. Therefore, in this study, an attempt has been made to understand the effect of fuel injector location and nozzle-hole orientation on the mixture formation, performance and emission characteristics of a GDI engine. The mixture stratification inside the combustion chamber is characterized by a parameter called “stratification index” which is based on average equivalence ratio at different zones in the combustion chamber.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Near Nozzle Flow and Atomization Characteristics of Biodiesel Fuels

2017-10-08
2017-01-2327
Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
Technical Paper

A Comparison of Conventional and Reactivity Controlled Compression Ignition (RCCI) Combustion Modes in a Small Single Cylinder Air-Cooled Diesel Engine

2017-10-08
2017-01-2365
Reactivity controlled compression ignition (RCCI) is one of the most promising low temperature combustion (LTC) strategies to achieve higher thermal efficiencies along with ultra low oxides of nitrogen (NOx) and particulate matter emissions. Small single cylinder diesel engines of air-cooled type are finding increasing applications in the agriculture pump-set and small utility power generation owing to their lower cost and fuel economy advantages. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under RCCI combustion mode with a newly designed cylinder head to accommodate a high pressure, fully flexible electronically controlled direct diesel fuel injection system, a low pressure gasoline port fuel injection system and an intake air pre heater.
Technical Paper

A Comparison of Different Low Temperature Combustion Strategies in a Small Single Cylinder Diesel Engine under Low Load Conditions

2017-10-08
2017-01-2363
Advanced low temperature combustion (LTC) modes are most promising to reduce green house gas emissions owing to fuel economy benefits apart from simultaneously reducing oxides of nitrogen (NOx) and particulate matter (PM) emissions from diesel engines. Various LTC strategies have been proposed so far and each of these LTC strategies have their own advantages and limitations interms of precise ignition control, achievable load range and higher unburned emissions. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under different LTC strategies including Homogenous Charge Compression Ignition (HCCI), Premixed Charge Compression Ignition (PCCI) and Reactivity Controlled Compression Ignition (RCCI).
Technical Paper

A Composition Based Approach for Predicting Performance and Emission Characteristics of Biodiesel Fuelled Engine

2017-10-08
2017-01-2340
Biodiesel is a renewable, carbon neutral alternative fuel to diesel for compression ignition engine applications. Biodiesel could be produced from a large variety of feedstocks including vegetable oils, animal fats, algae, etc. and thus, vary significantly in their composition, fuel properties and thereby, engine characteristics. In the present work, the effects of biodiesel compositional variations on engine characteristics are captured using a multi-linear regression model incorporated with two new biodiesel composition based parameters, viz. straight chain saturation factor (SCSF) and modified degree of unsaturation (DUm). For this purpose, biodiesel produced from seven vegetable oils having significantly different compositions are tested in a single cylinder diesel engine at varying loads and injection timings. The regression model is formulated using 35 measured data points and is validated with 15 other data points which are not used for formulation.
Technical Paper

An Experimental Study of Microscopic Spray Characteristics of a GDI Injector Using Phase Doppler Interferometry

2016-02-01
2016-28-0006
Gasoline Direct Injection (GDI) engine is known for its higher power and higher thermal efficiency. Researchers are steadily determining and resolving the problems of fuel injection in a GDI engine. In order to meet the stringent emission norms such as PM and NOx emitted by a GDI engine, it is necessary to investigate the microscopic spray characteristics and fuel-air mixing process. This paper aims to share the fundamental knowledge of the interacting mixture preparation mechanisms at the wide range of fuel injection pressures. The investigations were carried out at five different fuel injection pressures viz: 40, 80, 120, 160, 200 bar, for 24 mg fuel per injection. A high speed CCD camera was used to determine the macroscopic spray characteristics of the GDI injector. It was found that spray penetration length increased with increasing fuel injection pressure. Phase Doppler Interferometry (PDI) was used to determine the droplet size and droplet velocity for different test fuels.
Technical Paper

Reducing NO in a Biodiesel Fueled Compression Ignition Engine - An Experimental Study

2015-09-06
2015-24-2483
The replacement of fossil diesel with neat biodiesel in a compression ignition engine has advantage in lowering unburned hydrocarbon, carbon monoxide and smoke emissions. However, the injection advance experienced with biodiesel fuel with respect to diesel injection setting increases oxides of nitrogen emission. In this study, the biodiesel-NO control is attempted using charge and fuel modification strategies with retarded injection timing. The experiments are performed at maximum torque speed and higher loads viz. from 60% up to full load conditions maintaining same power between diesel and biodiesel while retarding the timing of injection by 3 deg. crank angle. The charge and fuel modifications are done by recycling 5% by volume of exhaust gas to the fresh charge and 10% by volume of methanol to Karanja biodiesel.
Technical Paper

Noise, Vibrations and Combustion Investigations of Preheated Jatropha Oil in a Single Cylinder Genset Engine

2015-04-14
2015-01-1668
High viscosity of vegetable oil causes ignition problems when used in compression ignition engines. There is a need to reduce the viscosity before using it as engine fuel. Preheating and pre-treating of vegetable oils using waste heat of exhaust gases is one of the techniques, which reduces the viscosity and makes it possible to use it as alternate fuel for some niche applications, without requiring major modifications in the engine hardware. Several applications such as decentralized power generation, agricultural engines, and water pumping engines, can use vegetable oils as an alternative fuel. In present investigation, performance, combustion, and emission characteristics of an engine using preheated 20% blend of Jatropha oil with mineral diesel (J20) has been evaluated at a constant speed (1500 rpm) in a single cylinder four stroke direct injection diesel engine.
Technical Paper

Transient Spray Characteristics of Air Assisted Fuel Injection

2015-04-14
2015-01-0920
Gasoline direct injection (GDI) technology is already in use in four wheeler applications owing to the additional benefits in terms of better combustion and fuel economy. The air-assisted in-cylinder injection is the emerging technology for gasoline engines which works with low pressure injection systems unlike gasoline direct injection (GDI) system. GDI systems use high pressure fuel injection, which provides better combustion and reduced fuel consumption. It envisages small droplet size and low penetration rate which will reduce wall wetting and hydrocarbon emissions. This study is concerned with a CFD analysis of an air-assisted injection system to evaluate mixture spray characteristics. For the analysis, the air injector fitted onto a constant volume chamber (CVC) maintained at uniform pressure is considered. The analysis is carried out for various CVC pressures, mixture injection durations and fuel quantities so as to understand the effect on mixture spray characteristics.
Journal Article

Tomographic Particle Image Velocimetry for Flow Analysis in a Single Cylinder Optical Engine

2015-04-14
2015-01-0599
Better understanding of flow phenomena inside the combustion chamber of a diesel engine and accurate measurement of flow parameters is necessary for engine optimization i.e. enhancing power output, fuel economy improvement and emissions control. Airflow structures developed inside the engine combustion chamber significantly influence the air-fuel mixing. In this study, in-cylinder air flow characteristics of a motored, four-valve diesel engine were investigated using time-resolved high-speed Tomographic Particle Imaging Velocimetry (PIV). Single cylinder optical engine provides full optical access of combustion chamber through a transparent cylinder and flat transparent piston top. Experiments were performed in different vertical planes at different engine speeds during the intake and compression stroke under motoring condition. For visualization of air flow pattern, graphite particles were used for flow seeding.
Technical Paper

Unregulated and Regulated Emissions from Biodiesel Fuelled CRDI SUV Engine

2015-04-14
2015-01-0889
Use of biodiesel from non-edible vegetable oil as an alternative fuel to mineral diesel is attractive economically and environmentally. Diesel engines emit several harmful gaseous emissions and some of them are regulated worldwide, while countless others are not regulated. These unregulated species are associated with severe health hazards. Karanja biodiesel is a popular alternate fuel in South Asia and various governments are considering its large-scale implementation. Therefore it is important to study the possible adverse impact of this new alternate fuel. In this study, unregulated and regulated emissions were measured at varying engine speeds (1500, 2500 and 3500 rpm) for various engine loads (0%, 20%, 40%, 60%, 80% and 100% rated load) using 20% Karanja biodiesel blend (KB20) and diesel in a 4-cylinder 2.2L common rail direct injection (CRDI) sports utility vehicle (SUV) engine.
Technical Paper

Effect Of Swirl and Tumble on the Stratified Combustion of a DISI Engine - A CFD Study

2011-04-12
2011-01-1214
Of late direct injection engines are replacing carburetted and port injected engines due to their high thermal efficiency and fuel economy. One of the reasons for the increased fuel economy is the ultra lean mixture with which the engine operates under low loads. Under the low load conditions, the air fuel ratio of the mixture near the spark plug is close to stoichiometric values while the overall mixture is lean, which is called stratified mixture. In order to achieve this, proper air motion during the late stages of compression is a must. Quality of the mixture depends on the time of injection as well as the type of fuel injector and mixture preparation strategy used. Engines employing air guided mixture preparation are considered as the second generation engines. For understanding the efficient mixture preparation method, three types of flow structures like base (low tumble), high tumble and inclined swirl are created inside the engine cylinder using shrouds on the intake valves.
Technical Paper

Experimental Evaluation of Mahua based Biodiesel as Supplementary Diesel Fuel

2009-04-20
2009-01-0479
Biodiesel developed from non- edible seeds grown in the wasteland in India can be very effectively utilized in the existing diesel engines used for various applications. This paper presents the results of investigations carried out in studying the fuel properties of mahua oil methyl ester (MOME) and its blend with diesel from 20% to 80% by volume. These properties were found to be comparable to diesel and confirming to both the American and Indian standards. The performance of mahua biodiesel (MOME) and its blend with diesel in a Kirloskar DAF8 engine has been observed. The addition of MOME to diesel fuel has significantly reduced CO, UBHC and smoke emissions but increases the NOx emission slightly. The reductions in exhaust emissions could help in controlling air pollution. The results show that no significant power reduction in the engine operation when operated with blends of MOME and diesel fuel.
Technical Paper

Studies on Performance and Exhaust Emissions of a CI Engine Operating on Diesel and Diesel Biodiesel Blends at Different Injection Pressures and Injection Timings

2007-04-16
2007-01-0613
The effect of variation in injection pressure and Injection timing on the performance and exhaust emission characteristics of a direct injection, naturally aspirated Diesel engine operating on Diesel and Diesel-Biodiesel Blends were studied. A three-way factorial design consisting of four levels of injection pressure (150,210, 265,320 bar), four levels of injection timing (19° btdc, 21.5° btdc, 26° btdc, and 30.5° btdc) and five different fuel types (D100, B10, B20, B40, and B60) were employed in this test. The experimental analysis shows that when operating with Linseed Oil Methyl Ester-Diesel blends, we could increase the injection pressure by about 25% over the normal value of 20MPa. The engine performance and exhaust emission characteristics of the engine operating on the ester fuels at advanced injection timing were better than when operating at increased injection pressure.
Technical Paper

Spark Ignition Producer Gas Engine and Dedicated Compressed Natural Gas Engine - Technology Development and Experimental Performance Optimisation

1999-10-25
1999-01-3515
In the present study, a 17 kW, stationary, direct- injection diesel engine has been converted to operate it as a gas engine using producer-gas and compressed natural gas (CNG) as the fuels on two different operational modes called SIPGE (Spark Ignition Producer Gas Engine) and DCNGE (Dedicated Compressed Natural Gas Engine). The engine before conversion, was run on two other modes of operation, namely, diesel mode using only diesel and producer-gas-diesel-dual-fuel mode with diesel used for pilot ignition. The base data generated on diesel mode was used for performance comparison under other modes to ascertain the fuel flexibility. A technology development and optimisation followed by performance confirmation are the three features of this study. The exercise of conversion to SIPGE is a success since comparable power and efficiency could be developed. DCNGE operation also yielded comparable power with higher efficiency, which establishes the fuel flexibility of the converted machine.
Technical Paper

Computer Simulation Studies of an Alcohol Fueled Low Heat Rejection Direct Injection Diesel Engine

1997-10-01
972976
This paper describes the development of a computer simulation model for a single cylinder direct injection diesel engine for neat diesel operation, ethanol-diesel dual fuel operation in fumigation and dual injection mode, operating on conventional or low heat rejection version. The model which illustrates the simulation of the overall cycle consisting of compression, combustion, expansion, exhaust and intake processes also predicts the nitric oxide and soot emissions. In addition it also predicts the brake power, brake thermal efficiency, brake specific fuel consumption, maximum gas pressure and maximum gas temperature. The above model was validated using available experimental results. Subsequently the computer program was run for different operating conditions encompassing broad changes in several engine operating parameters.
X