Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Percipient Analysis of Jaguar I-PACE Electric Vehicle Energy Consumption Using Big Data Analytics

2024-04-09
2024-01-2879
Vehicle efficiency and range, along with the DC charging speed, are deemed as the most important criteria for an electric vehicle currently. The electric vehicle energy consumption is impacted by the change in temperature along with the driving style and average speed of a customer, all other factors being constant. Hence understanding the patterns and impact of different aspects of an EV range & charging speed is crucial in delivering an electric vehicle with robust efficiency across all weather conditions. In this paper we have analysed vehicle parameters of global Jaguar I-PACE customer data. We present and analyse the collated big data of around 50,000+ unique vehicles with a data aggregate of well over 482 million km. In moderate ambient conditions the analysis indicated a good correlation with 50th to 75th percentile drivers’ energy consumption to the EPA label figure.
Technical Paper

Mapping an Optimum DC-Link Voltage across the Entire SiC-Based EV Drive Regions Using a Synchronous Boost DC-DC Converter

2024-04-09
2024-01-2218
When designing an electric vehicle (EV) traction system, overcoming the issues arising from the variations in the battery voltage due to the state of charge (SoC) is critical, which otherwise can lead to a deterioration of the powertrain energy efficiency and overall drive performance. However, systems are typically documented under fixed voltage and temperature conditions, potentially lacking comprehensive specifications that account for these variations across the entire range of the vehicle operating regions. To tackle this challenge, this paper seeks to adjust an optimal DC-link voltage across the complete range of drive operating conditions by integrating a DC-DC converter into the powertrain, thereby enhancing powertrain efficiency. This involves conducting a comprehensive analysis of power losses in the power electronics of a connected converter-inverter system considering the temperature variations, along with machine losses, accounting for variable DC-link voltages.
Technical Paper

Comparison of Neural Network Topologies for Sensor Virtualisation in BEV Thermal Management

2024-04-09
2024-01-2005
Energy management of battery electric vehicle (BEV) is a very important and complex multi-system optimisation problem. The thermal energy management of a BEV plays a crucial role in consistent efficiency and performance of vehicle in all weather conditions. But in order to manage the thermal management, it requires a significant number of temperature sensors throughout the car including high voltage batteries, thus increasing the cost, complexity and weight of the car. Virtual sensors can replace physical sensors with a data-driven, physical relation-driven or machine learning-based prediction approach. This paper presents a framework for the development of a neural network virtual sensor using a thermal system hardware-in-the-loop test rig as the target system. The various neural network topologies, including RNN, LSTM, GRU, and CNN, are evaluated to determine the most effective approach.
Technical Paper

Model Based Algebraic Weight Selection for LQI Control Reducing Dog Clutch Engagement Noise

2024-04-09
2024-01-2146
This paper presents a feedback control strategy to minimize noise during dog clutch engagement in a hybrid transmission. The hybrid transmission contains an internal combustion engine(ICE) and 2 electric motors in P1 and P3 configurations. For efficiency during driving, at high vehicle speeds ICE is connected to wheels, via the dog clutch, hence shifting the vehicle from series to parallel hybrid mode. It is shown by experimental results that if the speed difference between the two sides of the dog clutch is below a certain level the engagement will be without clonk noise. In this paper the designed state feedback Linear Quadratic Integral (LQI) control provides the synchronization torque request to the P1 motor, hence matching the speed of one side of dog clutch with the other under the disturbance from combustion torque of the engine.
Technical Paper

1D-3D CFD Investigations to Improve the Performance of Two-Stroke Camless Engine

2024-04-09
2024-01-2686
The transportation sector still depends on conventional engines in many countries as the alternative technologies are not mature enough to reduce carbon footprints in society. The four-stroke diesel engines, primarily used for heavy-duty applications, need either high intake boosting or a large bore to produce higher torque and power output. There is an alternative where a four-stroke engine operated in two-stroke mode with the help of a fully flexible variable valve actuation (VVA) system can achieve similar power density without raising the intake boosting or engine size. A fully flexible VVA is required to control the valve events (lift, timing, and durations) independently so that the four-stroke events can be completed in one cycle. In this study, 1D-3D CFD coupled simulations were performed to develop a gas exchange process for better air entrapment in the cylinder and evacuate the exhaust products simultaneously.
Technical Paper

Virtual Evaluation of PM Rotor Failure Modes and Magnet Adhesive Debonding with Cohesive Interface Approach

2024-04-09
2024-01-2725
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements gives rise to the need for increased efficiency and power density of the motors in the Electric Drive Unit (EDU). Internal Permanent Magnet (IPM) motor is one of the best suited options in such scenarios because of its primary advantages of higher efficiency and precise control over torque and speed. In the IPM motor, permanent magnets are mounted within the rotor body to produce a resultant rotating magnetic field with the 3-phase AC current supply in the stator. IPM configuration provides structural integrity and high dynamic performance as the magnets are inserted within the rotor body. Adhesive glue is used to install the magnets within the laminated stack of rotor.
Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
Technical Paper

Wheel Drive Unit Lift Corrections in Automotive Wind Tunnels

2024-04-09
2024-01-2544
Correct simulations of rotating wheels are essential for accurate aerodynamic investigations of passenger vehicles. Therefore, modern automotive wind tunnels are equipped with five-belt moving ground systems with wheel drive units (WDUs) connected to the underfloor balance. The pressure distribution on the exposed areas of the WDU belts results in undesired lift forces being measured which must be considered to obtain accurate lift values for the vehicle. This work investigates the parasitic WDU lift for various configurations of a crossover SUV using numerical simulations that have been correlated to wind tunnel data. Several parameters were considered in the investigation, such as WDU size, WDU placement, tyre variants and vehicle configurations. The results show that the parasitic lift is more sensitive to the width than the length of the WDU. However, the belt length is also important to consider, especially if the wheel cannot be placed centred.
Technical Paper

Material Modelling of Lamination Stack in Electric Machines

2024-04-09
2024-01-2745
The rotor and stator of electric motors consist of multiple materials, of which steel forms the majority of mass and volume. Steel in electric motors is commonly in the form of thin sheets (laminations), stacked along the axis of the rotor. The structural integrity of such a stack can be ensured using bolting, welding or bonding of the laminations. Predictive mechanical finite element simulations of these laminated stacks can become computationally intense because the steel sheets are thin, and the motor often contains hundreds of them. If the laminations are modelled individually, the size of the elements is very small compared to the overall dimensions and the interface between the laminations need to be modelled as well. In this paper, we present an alternate method of modelling this laminated stack as a single solid body using homogeneous and orthotropic material property, instead of representing each lamination.
Technical Paper

Thermal Management System Test Bench for Electric Vehicle Technology

2024-04-09
2024-01-2407
The importance of designing and sizing a thermal management system for electric vehicle powertrains cannot be overstated. Traditional approaches often rely on model-based system design using supplier reference component data, which can inadvertently lead to undisclosed errors arising from the interactions between the components and the environment. This paper introduces a novel test facility for battery electric vehicle thermal management technology, which has been designed for neural network virtual sensor and non-linear multi-in multi-out control development. The paper demonstrates how a digital twin of the test bench can used to support the development of such technology. Additionally, this paper presents preliminary results from the test bench revealing insights into the performance and interactions of key components. For instance, there is an observed 30% reduction in the maximum flow rate of the pump integrated into the test bench compared to the specified value.
Technical Paper

Characterization of Gaseous and Particle Emissions of a Direct Injection Hydrogen Engine at Various Operating Conditions

2023-09-29
2023-32-0042
This paper investigates the gaseous and particulate emissions of a hydrogen powered direct injection spark ignition engine. Experiments were performed over different engine speeds and loads and with varying air- fuel ratio, start of injection and intake manifold pressure. An IAG FTIR system was used to detect and measure a variety of gaseous emissions, which include standard emissions such as NOX and unburned hydrocarbons as well as some non-standard emissions such as formaldehyde, formic acid, and ammonia. The particle number concentration and size distribution were measured using a DMS 500 fast particle analyzer from Cambustion. Particle composition was investigated using ICP analysis as well as a Sunset OC/EC analyzer to determine the soot content and the presence of any unburned engine oil. The results show that NOX emissions range between 0.1 g/kWh for a λ of 2.5 and 10 g/kWh λ of 1.5.
Technical Paper

Comparative Assessment of Zero CO2 Powertrain for Light Commercial Vehicles

2023-08-28
2023-24-0150
The transport sector is experiencing a shift to zero-carbon powertrains driven by aggressive international policies aiming to fight climate change. Battery electric vehicles (BEVs) will play the main role in passenger car applications, while diversified solutions are under investigation for the heavy-duty sector. Within this framework, Light Commercial Vehicles (LCVs) impact is not negligible and accountable for about 2.5% of greenhouse gas (GHG) emissions in Europe. In this regard, few LCV comparative assessments on green powertrains are available in the scientific literature and justified by the fact that several factors and limitations should be considered and addressed to define optimal powertrain solutions for specific use cases. The proposed research study deals with a comparative numerical assessment of different zero-carbon powertrain solutions for LCV. BEVs are compared to hydrogen-based fuel cells (FC) and internal combustion engines (ICE) powered vehicles.
Technical Paper

Beamforming Quantification of Acoustic Transmission Paths for Passenger Vehicles Using a Reciprocal Approach

2023-05-08
2023-01-1090
This paper presents an experimental method for measuring transmission paths from the exterior to the interior of a passenger vehicle using a reciprocal approach: A production vehicle was placed in a semi-anechoic environment; artificial noise sources were placed at the location of the occupant’s ear(s) inside the vehicle and beamforming arrays with a total of more than 300 microphones were used to observe apparent noise sources on the vehicle exterior resulting from transmission paths. This makes it possible to quickly measure transmission paths over the whole vehicle body. One of the motivations for this work is the monitoring of sealing quality on production vehicles. Artificial seal breaches were introduced on the vehicle and a number of excitation signals were assessed to develop a method to detect and localise leakage noise sources.
Technical Paper

Target Driven Bushing Design for Wheel Suspension Concept Development

2023-04-11
2023-01-0638
Bushing elasticity is one of the most important compliance factors that significantly influence driving behavior. The deformations of the bushings change the wheel orientations under external forces. Another important factor of bushing compliance is to provide a comfortable driving experience by isolating the vibrations from road irregularities. However, the driving comfort and driving dynamics are often in conflict and need to be balanced in terms of bushing compliance design. Specifically, lateral force steer and brake force steer are closely related to safety and stability and comprises must be minimized. The sensitivity analysis helps engineers to understand the critical bushing for certain compliance attributes, but optimal balancing is complicated to understand. The combination of individual bushing stiffness must be carefully set to achieve an acceptable level of all the attributes.
Technical Paper

Drivers’ Perceived Sensitivity to Crosswinds and to Low-Frequency Aerodynamic Lift Fluctuations

2023-04-11
2023-01-0659
The automotive industry continues to increase the utilization of computer-aided engineering. This put demands on finding reliable objective measures that correlate to subjective driver assessments on driving stability performance. However, the drivers’ subjective perception of driving stability can be difficult to quantify objectively, especially on test tracks where the wind conditions cannot be controlled. The advancement in driving simulator technology may enable evaluation of driving stability with high repeatability. The purpose of this study is to correlate the subjective assessment of driving stability to reliable objective measures and to evaluate the usefulness of a driving simulator for the subjective assessment. Two different driver clinic studies were performed in a state-of-the-art driving simulator. The first study included 38 drivers (professional, experienced and common drivers) and focused on crosswind gust sensitivity.
Technical Paper

A Numerical Investigation of Gas Exchange Modeling and Performance Prediction of a Camless Two-Stroke Hydrogen Engine

2023-04-11
2023-01-0232
Heavy-duty vehicles are primarily powered by diesel fuel, emitting CO2 emissions regardless of the exhaust after-treatment system. Contrastingly, a hydrogen engine has the potential to decarbonize the transportation sector as hydrogen is a carbon free, renewable fuel. In this study, a multi-physics 1D simulation tool (GT-Power) is used to model the gas exchange process and performance prediction of a two-stroke hydrogen engine. The aim is to establish a maximum torque-level for a four-stroke hydrogen engine and then utilize different methods for two-stroke modeling to achieve similar torque by optimizing the gas exchange process. A camless engine is used as base, enabling the flexibility to utilize approximately square valve lift profiles. The preliminary step is the GT-Power model validation, which has been done using diesel and hydrogen engines (single-cylinder heavy-duty) experiments at different operating points (871 rpm, 1200 rpm, 1259 rpm, and 1508 rpm).
Technical Paper

Predictive Model of Driver’s Perception of Vehicle Stability under Aerodynamic Excitation

2023-04-11
2023-01-0903
In vehicle development, a subjective evaluation of the vehicle’s behavior at high speeds is usually conducted by experienced drivers with the objective of assessing driving stability. To avoid late design changes, it is desirable to predict and resolve perceived instabilities early in the development phase. In this study, a mathematical model is developed from measurements during on-road tests to predict the driver’s ability to identify vehicle instabilities under excitations such as aerodynamic excitations. A vehicle is fitted with add-ons to create aerodynamic excitations and is driven by multiple drivers on a high-speed track. Drivers’ evaluation, responses, cabin motion, and crosswind conditions are recorded. The influence of yaw and roll rates, lateral acceleration, and steering angle at various frequency ranges when predicting the drivers’ evaluation of induced excitation is demonstrated. The drivers’ evaluation of vehicle behavior is influenced by driver-vehicle interactions.
Technical Paper

Visualisation of Roof Bar Noise Sources through the Use of Acoustic Beamforming and Computational Aeroacoustics

2023-04-11
2023-01-0840
The reduction in wind noise is increasingly important to vehicle designers as overall vehicle refinement increases. Customers often fit accessories such as roof bars to vehicles, with the aerodynamic interaction of these components generating aeroacoustic noise sources. These are often tonal in nature and of particular annoyance to occupants. Sensors for automated driving fitted to future vehicles may also have a similar detrimental effect on vehicle refinement. Therefore, careful design of such components is important to minimise dissatisfaction. This paper presents the combined application of acoustic beamforming in a full-scale aeroacoustic wind tunnel and the use of a Lattice Boltzmann Method CFD code to characterise the aeroacoustic performance of a roof bar design when fitted to a production vehicle.
Technical Paper

Application of Model Predictive Control to Cabin Climate Control Leading to Increased Electric Vehicle Range

2023-04-11
2023-01-0137
For electric vehicles (EVs), driving range is one of the major concerns for wider customer acceptance and the cabin climate system represents the most significant auxiliary load for battery consumption. Unlike internally combustion engine (ICE) vehicles, EVs cannot utilize the waste heat from an engine to heat the cabin through the heating, ventilation and air conditioning (HVAC) system. Instead, EVs use battery energy for cabin heating, this reduces the driving range. To mitigate this situation, one of the most promising solutions is to optimize the recirculation of cabin air, to minimize the energy consumed by heating the cold ambient air through the HVAC system, whilst maintaining the same level of cabin comfort. However, the development of this controller is challenging, due to the coupled, nonlinear and multi-input multi-output nature of the HVAC and thermal systems.
Technical Paper

Influence of Wheel Drive Unit Belt Width on the Aerodynamics of Passenger Vehicles

2023-04-11
2023-01-0657
Wind tunnels are an essential tool in vehicle development. To simulate the relative velocity between the vehicle and the ground, wind tunnels are typically equipped with moving ground and boundary layer control systems. For passenger vehicles, wind tunnels with five-belt systems are commonly used as a trade-off between accurate replication of the road conditions and uncertainty of the force measurements. To allow different tyre sizes, the wheel drive units (WDUs) can often be fitted with belts of various widths. Using wider belts, the moving ground simulation area increases at the negative cost of larger parasitic lift forces, caused by the connection between the WDUs and the balance. In this work, a crossover SUV was tested with 280 and 360mm wide belts, capturing forces, surface pressures and flow fields. For further insights, numerical simulations were also used.
X