Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Properties and Additives of Gasoline on Low-Speed Pre-Ignition in Turbocharged Engines

2022-08-30
2022-01-1077
Gasoline-related factors that affect low-speed pre-ignition (LSPI) include the distillation properties of gasoline, manganese (Mn), ethanol, diesel fuel, detergent for aftermarket, and iron (Fe). The combined effect of Mn with ethanol or high calcium engine oil (high-Ca oil) has not been sufficiently clarified. Therefore, appropriate countermeasures for LSPI have not yet been implemented. To clarify the effect of the gasoline properties and additives on LSPI, engine tests were conducted using gasoline with different “PM Index” values, an indicator of distillation properties, different concentrations of Mn, ethanol, diesel fuel, detergent, Fe, and high-Ca oil. The results showed that the LSPI frequency tended to increase with the PM Index, Mn up to 60 ppm, diesel fuel up to 2 vol.%, and detergent up to three times the standard amount.
Technical Paper

Kinetic Measurements of HNCO Hydrolysis over SCR Catalyst

2018-09-10
2018-01-1764
To meet the strict emission regulations for diesel engines, an advanced processing device such as a Urea-SCR (selective catalytic reduction) system is used to reduce NOx emissions. The Real Driving Emissions (RDE) test, which is implemented in the European Union, will expand the range of conditions under which the engine has to operate [1], which will lead to the construction of a Urea-SCR system capable of reducing NOx emissions at lower and higher temperature conditions, and at higher space velocity conditions than existing systems. Simulations are useful in improving the performance of the urea-SCR system. However, it is necessary to construct a reliable NOx reduction model to use for system design, which covers the expanded engine operation conditions. In the urea-SCR system, the mechanism of ammonia (NH3) formation from injected aqueous urea solution is not clear. Thus, it is important to clarify this mechanism to improve the NOx reduction model.
Technical Paper

Mechanism of White Smoke Generation Derived from Hydrocarbons Accumulations on Diesel Oxidation Catalyst

2018-04-03
2018-01-0641
White smoke emission is observed at the tailpipe of diesel vehicles when unburned hydrocarbons (HCs) are adsorbed on a diesel oxidation catalyst (DOC) under low exhaust gas temperature. The purpose of this study is to gain a better understanding of white smoke emission derived from HCs, and to reduce emission levels. First, the components of HCs and the particle size distribution of white smoke emission were analyzed. It was clarified that semi-volatile organic compounds (SVOC) and water are condensed around soluble organic fraction and the order of particle size in white smoke is submicron scale. Additionally, the correlation between the behavior of white smoke emission and the amount/quality of HCs adsorbed on a DOC were investigated by examining the change of zeolite content in the DOC. It was found that the heavy HCs ratio in adsorbed HCs on DOC increases with a decrease in zeolite content when DOC inlet gas temperature is 120 °C.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Journal Article

Examination of the Validity of Connections between MSILs and ASILs in the Functional Safety Standard for Motor Vehicles

2015-11-17
2015-32-0794
ISO 26262, a functional safety standard for motor vehicles, was published in November 2011. Although motorcycles are not included in the scope of application of the current edition of ISO 26262, it is expected that motorcycles will be included in the next revision. However, it is not appropriate to directly apply automotive safety integrity levels (ASILs) to motorcycles because the situation of usage in practice presumably differs between motorcycles and motor vehicles. In our previous study, we newly defined safety integrity levels for motorcycles (MSILs) and proposed that the levels of MSILs should correspond to levels one step lower than those of ASILs; however, we did not investigate the validity of their connections. Accordingly, in this research, we validated the connections. We defined the difference of levels of SILs between motorcycles and motor vehicles as the difference of target values of random hardware failure rates specified in ISO 26262-5.
Technical Paper

Study on Haptic Maneuver Guidance by Periodic Knocks on Accelerator Pedal

2015-03-10
2015-01-0039
This study proposes a method for presenting maneuver request information of accelerator pedal to a driver via the accelerator pedal itself. By applying periodic force like vibration on an accelerator pedal, information is transferred to the driver without displacing the accelerator pedal. In this study, the authors focus on a saw-tooth wave as the periodic force. When the saw-tooth-waved force is applied on the accelerator pedal, a human driver feels as if the accelerator pedal is knocked by someone periodically. In addition, information about the quantity of requested maneuver can be transferred by the amplitude of the saw-tooth wave. Based on these facts, the saw-tooth wave is modified and optimized empirically with ten human drivers so that the information of direction is transferred most reliably. In addition, the relationship between the amplitude of the saw-tooth wave and requested quantity of the pedal maneuver that the drivers feel is formulated.
Journal Article

Comparison of Fires in Lithium-Ion Battery Vehicles and Gasoline Vehicles

2014-04-01
2014-01-0428
Electric vehicles have become more popular and may be involved in fires due to accidents. However, characteristics of fires in electric vehicles are not yet fully understood. The electrolytic solution of lithium-battery vehicles is inflammable, so combustion characteristics and gases generated may differ from those of gasoline cars. Therefore, we conducted fire tests on lithium-ion battery vehicles and gasoline vehicles and investigated the differences in combustion characteristics and gases generated. The fire tests revealed some differences in combustion characteristics. For example, in lithium-ion battery vehicles, the battery temperature remained high after combustion of the body. However, there was almost no difference in the maximum CO concentration measured 0.5 to 1 m above the roof and 1 m from the side of the body. Furthermore, HF was not detected in either type of vehicle when measured at the same positions as for CO.
Technical Paper

Investigations of the impact of 10% ethanol blended fuels on performances of sold gasoline vehicles in the Japanese market already on the road in Japan

2011-08-30
2011-01-1987
The study of 10% ethanol blended gasoline (E10 gasoline) utilization has been conducted in the Japan Auto-Oil Program (JATOP). In order to clarify the impact of E10 gasoline on vehicle performances, exhaust emissions, evaporative emissions, driveability and material compatibility have been investigated by using domestic gasoline vehicles including mini motor vehicles which are particular to Japan. The test results reveal that E10 gasoline has no impact on exhaust emissions, engine startup time and acceleration period under the hot start condition, but a slight deterioration is observed in some test cases under the cold start condition using E10 gasolines with 50% distillation temperature (T50) level set to the upper limit of Japanese Industrial Standards (JIS) K 2202. Regarding evaporative emissions, the tested vehicles shows no remarkable increase in the hot soak loss (HSL), diurnal breathing loss (DBL) and running loss (RL) testing with E10 gasolines.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles II

2007-07-23
2007-01-2039
JCAPII gasoline workgroup reported vehicle emission study to comprehend the impact of ETBE blending. In previous study, we focused on the compatibility of ETBE blended gasoline with Japanese current gasoline vehicles in-use. Based on recent discussion with ETBE 8% blended gasoline into the market, more information becomes necessary. In this second report, we studied to comprehend the actual emission impact using realistic model fuels using several base stocks. Fuel properties of T50, T90 and aromatic compound content were selected through discussions. Specifications were changed within the range of the market. Both ETBE 0% and 8% were combined for these fuel matrixes. In total, eight fuels and two reference fuels were tested. Two J-ULEV vehicles (one MPI, and a stoichiometric-SIDI) were procured as representatives. We discussed quantitative and qualitative impact toward emissions. Data regarding CO2 and fuel economy change were also reported.
Technical Paper

SOF Component of Lubricant Oil on Diesel PM in a High Boosted and Cooled EGR Engine

2007-04-16
2007-01-0123
The engine in the research is a single cylinder DI diesel using the emission reduction techniques such as high boost, high injection pressure and broad range and high quantity of exhaust gas recirculation (EGR). The study especially focuses on the reduction of particulate matter (PM) under the engine operating conditions. In the experiment the authors measured engine performance, exhaust gases and mass of PM by low sulfur fuel such as 3 ppm and low sulfur lubricant oil such as 0.26%. Then the PM components were divided into soluble organic fraction (SOF) and insoluble organic fraction (ISOF) and they were measured at each engine condition. The mass of SOF was measured from the fuel fraction and lubricant oil fraction by gas chromatography. Also each mass of soot fraction and sulfate fraction was measured as components of ISOF. The experiment was conducted at BMEP = 2.0 MPa as full load condition of the engine and changing EGR rate from 0% to 40 %.
Technical Paper

Effects of Fuel Properties on the Performance of Advanced Diesel NOx Aftertreatment Devices

2006-10-16
2006-01-3443
In the Japan Clean Air Program II (JCAP II) Diesel WG, effects of fuel properties on the performance of two types of diesel NOx emission aftertreatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined. For a Urea-SCR system, the NOx emission reduction performance with and without an oxidation catalyst installed in front of the SCR catalyst at low exhaust gas temperature operation was compared. For an NSR catalyst system, the effect of fuel sulfur on both emissions and fuel economy during 50,000 km driving was examined. Furthermore, effects of other fuel properties such as distillation on exhaust emissions were investigated. The results show that sulfur is the influential factor for both devices. Namely, high NOx emission reduction performance of the Urea-SCR system with the oxidation catalyst at low exhaust gas temperature operation is influenced by sulfur.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles

2006-10-16
2006-01-3381
Clarifying the impact of ETBE 8% blended fuel on current Japanese gasoline vehicles, under the Japan Clean Air Program II (JCAPII) we conducted exhaust emission tests, evaporative emission tests, durability tests on the exhaust after-treatment system, cold starting tests, and material immersion tests. ETBE 17% blended fuel was also investigated as a reference. The regulated exhaust emissions (CO, HC, and NOx) didn't increase with any increase of ETBE content in the fuel. In durability tests, no noticeable increase of exhaust emission after 40,000km was observed. In evaporative emissions tests, HSL (Hot Soak Loss) and DBL (Diurnal Breathing Loss) didn't increase. In cold starting tests, duration of cranking using ETBE 8% fuel was similar to that of ETBE 0%. In the material immersion tests, no influence of ETBE on these material properties was observed.
Technical Paper

Impact of Oil-derived Sulfur and Phosphorus on Diesel NOx Storage Reduction Catalyst - JCAP II Oil WG Report

2006-10-16
2006-01-3312
Emission regulations for diesel-powered vehicles have been gradually tightening. Installation of after-treatment devices such as diesel particulate filters (DPF), NOx storage reduction (NSR) catalysts, and so on is indispensable to satisfy rigorous limits of particulate matter (PM) and nitrogen oxides (NOx). Japan Clean Air Program II Oil Working Group (JCAPII Oil WG) has been investigating the effect of engine oil on advanced diesel after-treatment devices. First of all, we researched the impact of oil-derived ash on continuous regeneration-type diesel particulate filter (CR-DPF), and already reported that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF [1]. In this paper, impact of oil-derived sulfur and phosphorus on NSR catalyst was investigated using a 4L direct injection common-rail diesel engine with turbo-intercooler. This engine equipped with NSR catalyst meets the Japanese new short-term emission regulations.
Technical Paper

Influence of Ferrocene on Engine and Vehicle Performance

2006-10-16
2006-01-3448
Ferrocene is used as an antiknock additive to replace lead alkyls. To clarify the influence of one metal additive, ferrocene, on engine, following experiments were carried out. The insulation resistance of spark plugs was measured, deposits in the engine were analyzed, and an exhaust emission and fuel economy tests were conducted using gasoline containing ferrocene. The deposit, which contained iron oxides, adhered to the combustion chamber, spark plugs, and exhaust pipe when the engine operated with gasoline containing ferrocene. When vehicles operated with gasoline containing ferrocene, fuel consumption increased and the exhaust temperature rose. In addition, an abnormal electrical discharge pattern was observed in spark plugs operating at high temperatures. Iron-oxide of Fe3O4 is changed into Fe2O3 under high temperatures. Discharge current flows in iron oxides including Fe2O3 because the conductivity of Fe2O3 increases at high temperatures.
Technical Paper

Fire Safety Evaluation of a Vehicle Equipped with Hydrogen Fuel Cylinders: Comparison with Gasoline and CNG Vehicles

2006-04-03
2006-01-0129
In this study, we evaluated the fire safety of vehicles that use compressed hydrogen as fuel. We conducted fire tests on vehicles that used compressed hydrogen and on vehicles that used compressed natural gas and gasoline and compared temperatures around the vehicle and cylinder, internal pressure of the cylinder, irradiant heat around the vehicle, sound pressure levels when the pressure relief device (PRD) was activated, and damage to the vehicle and surrounding flammable objects. The results revealed that vehicles equipped with compressed hydrogen gas cylinders are not more dangerous than CNC or gasoline vehicles, even in the event of a vehicle fire.
Technical Paper

Effect of Alcohol Fuels on Fuel-Line Materials of Gasoline Vehicles

2005-10-24
2005-01-3708
In 1999, some Japanese fuel suppliers sold highly concentrated alcohol fuels, which are mixtures of gasoline and oxygenates, such as alcohol or ether, in amounts of 50% or more. In August 2001, it was reported that some vehicle models using the highly concentrated alcohol fuels encountered fuel leakage and vehicle fires due to corrosion of the aluminum used for the fuel-system parts. The Ministry of Economy, Trade and Industry (METI) and the Ministry of Land, Infrastructure and Transport Government of Japan (MLIT) jointly established the committee on safety for highly concentrated alcohol fuels in September 2001. The committee consisted of automotive technology and metal corrosion experts knowledgeable about preventing such accidents and ensuring user safety. Immersion tests were conducted on metals and other materials used for the fuel-supply system parts to determine the corrosion resistance to each alcohol component contained in the highly concentrated alcohol fuels.
Technical Paper

Feasibility Study of Urea SCR Systems on Heavy Duty Commercial Vehicles

2004-06-08
2004-01-1944
Four urea SCR systems were developed and evaluated on a C/D and on the road to investigate their potential for Japanese emission regulations in 2005 and beyond. Test results showed that NOx conversion ratios were 50 to 70% during the Japanese D13 mode cycle, and the ratios under the transient driving cycle were lower than those tested during a steady state. Unregulated emissions, such as benzene, aldehyde and benzo[a]pyrene, existed either at a trace level using the oxidation catalyst, or lower than a base diesel engine, when no oxidation catalyst was used. The health effects of particulate matter emitted from the SCR system were almost the same as those from conventional diesel engines, as evaluated by the Ames test and in vitro micronucleus test. Thermal degradation products, such as cyanuric acid and melamine, were two to four figures lower compared with the toxicological information of Safety Information Resources Inc. (SIRI).
Technical Paper

77 Basic Investigation of Particulate Matters (O-PM)) and Polycyclic Aromatic Hydrocarbons Emitted by Two-stroke Motorcycles

2002-10-29
2002-32-1846
Characteristics of mass emission of unburned Oil-Particulate Matter and polycyclic aromatic hydrocarbons from two-stroke scooter were investigated. The tests were carried out under with and without oxidation catalyst and various air-fuel ratio ranging from 12 to 16 at 50:1 of fuel-oil mixing ratio for easy sampling. Unburned Oil-Particulate Matter and 4- to 7-rings polycyclic aromatic hydrocarbons were trapped on filter. These compounds were analyzed by high performance liquid chromatography with fluorescence detector. Mass emission of polycyclic aromatic hydrocarbons and unburned Oil-Particulate Matter tends to decrease as air-fuel ratio which increased up to stoichiometric ratio. The highest conversion ratio of unburned Oil-Particulate Matter on the oxidation catalyst was 64%. Conversion ratio of polycyclic aromatic hydrocarbons increased as rings are smaller.
X