Refine Your Search

Topic

Author

Search Results

Technical Paper

Operation of Third Generation JPL Electronic Nose on the International Space Station

2009-07-12
2009-01-2522
The Third Generation ENose is an air quality monitor designed to operate in the environment of the US Lab on the International Space Station (ISS). It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 – 30 °C, relative humidity from 25 – 75% and pressure from 530 to 760 torr. This device was installed and activated on ISS on Dec. 9, 2008 and has been operating continuously since activation. Data are downlinked and analyzed weekly. Results of analysis of ENose monitoring data show the short term presence of low concentration of alcohols, octafluoropropane and formaldehyde as well as frequent short term unknown events.
Technical Paper

Thermal Design of the Mars Science Laboratory Powered Descent Vehicle

2008-06-29
2008-01-2001
NASA's Mars Science Laboratory mission will use a Powered Descent Vehicle to accurately and safely land a roving, robotic laboratory on the surface of Mars. The precision landing systems employed on this vehicle are exposed to a wide range of mission environments from deep space cruise to atmospheric descent and require a robust and adaptable thermal design. This paper discusses the overall thermal design philosophy of the MSL Powered Descent Vehicle and presents analysis of the active and passive elements comprising the Cruise, Entry, Descent, and Landing thermal control systems.
Technical Paper

On-Orbit Performance of the TES Loop Heat Pipe Heat Rejection System

2008-06-29
2008-01-2000
Launched on NASA's Aura spacecraft on July 15, 2004, JPL's Tropospheric Emission Spectrometer (TES) has been operating successfully for over three years in space. TES is an infrared high resolution, imaging fourier transform spectrometer with spectral coverage of 3.3 to 15.4 μm to measure and profile essentially all infrared-active molecules present in the Earth's lower atmosphere. It measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. The Aura spacecraft was successfully placed in a sun-synchronous near-circular polar orbit with a mean altitude of 705 km and 98.9 minute orbit period. The observatory is designed for a nominal 5 year mission lifetime. The instrument thermal design features include four temperature zones needed for efficient cryogenic staging to provide cooling at 65 K, 180 K, 230 K and 300 K.
Journal Article

On-Orbit Thermal Performance of the TES Instrument-Three Years in Space

2008-06-29
2008-01-2118
The Tropospheric Emission Spectrometer (TES), launched on NASA's Earth Observing System Aura spacecraft on July 15, 2004 has successfully completed over three years in space and has captured a number of important lessons. The instrument primary science objective is the investigation and quantification of global climate change. TES measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. It is an infrared (IR) high resolution, imaging Fourier Transform Spectrometer (FTS) with a 3.3 to 15.4 μm spectral coverage required for space-based measurements to profile essentially all infrared-active molecules present in the Earth's lower atmosphere. The nominal on-orbit mission lifetime is 5 years. The Aura spacecraft flies in a sun-synchronous near-circular polar orbit with 1:38 pm ascending node.
Journal Article

Ground Validation of the Third Generation JPL Electronic Nose

2008-06-29
2008-01-2044
The Third Generation ENose is an air quality monitor designed to operate in the environment of the US Lab on the International Space Station. It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 °C, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The abilities of the device to detect ten analytes, to reject confounders as “unknown” and to deconvolute mixtures of two analytes under varying environmental conditions has been tested extensively in the laboratory. Results of ground testing showed an overall success rate for detection, identification and quantification of analytes of 87% under nominal temperature and humidity conditions and 83% over all conditions.
Journal Article

Development of the Orbiting Carbon Observatory Instrument Thermal Control System

2008-06-29
2008-01-2065
The Orbiting Carbon Observatory (OCO) will carry a single science instrument scheduled for launch on an Orbital Sciences Corporation LeoStar-2 architecture spacecraft bus in December 2008. The science objective of the OCO instrument is to collect spaced-based measurements of atmospheric CO2 with the precision, resolution, and coverage needed to identify CO2 sources and sinks and quantify their seasonal variability. The instrument will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. These measurements will improve our ability to forecast CO2 induced climate change. The instrument consists of three bore-sighted, high resolution grating spectrometers sharing a common telescope with similar optics and electronics.
Journal Article

ATCC 29669 Spores Show Substantial Dry Heat Survivability

2008-06-29
2008-01-1982
Bacillus sp. ATCC 29669 was isolated from microbial fallout in clean rooms during the assembly of the Viking Spacecraft missions to Mars, making it a potential contamination concern for outbound space missions. Spores from this bacterial strain were found to be thirty times more resistant to dry heat than B. atrophaeus. Spore inactivation rates under vacuum controlled humidity were faster than rates obtained under ambient humidity. Inactivation rates for these heat resistant spores are important considerations for planetary protection implementation where temperature, time and humidity conditions are used to estimate the effectiveness of dry heat microbial reduction (DHMR) procedures.
Journal Article

Thermal Control System of the Moon Mineralogy Mapper Instrument

2008-06-29
2008-01-2119
The Moon Mineralogy Mapper (M3) instrument is one in a suite of twelve instruments which will fly onboard the Indian Chandrayaan-1 spacecraft scheduled for launch in 2008. Chandrayaan-1 is India's first mission to the Moon and is being managed by the Indian Space Research Organization (ISRO) in Bangalore, India. Chandrayaan-1 overall scientific objective is the photo-selenological and the chemical mapping of the Moon. The primary science objective of the M3 instrument is the characterization and mapping of the lunar surface composition in the context of its geologic evolution. Its primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions. It is a “push-broom” near infrared (IR) imaging spectrometer with spectral coverage of 0.4 to 3.0 μm at 10 nm resolution with high signal to noise ratio, spatial and spectral uniformity.
Technical Paper

Viral Populations within the International Space Station's Internal Active Thermal Control System Ground Support and Potential Flight Hardware

2007-07-09
2007-01-3108
The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) contains an aqueous, alkaline fluid (pH 9.5±0.5) that aids in maintaining a habitable environment for the crew. Because microbes have significant potential to cause disease, adverse effects on astronaut health, and microbe-induced corrosion, the presence of both bacteria and viruses within IATCS fluids is of concern. This study sought to detect and identify viral populations in IATCS samples obtained from the Kennedy Space Center as a first step towards characterizing and understanding potential risks associated with them. Samples were concentrated and viral nucleic acids (NA) extracted providing solutions containing 8.87-22.67 μg NA per mL of heat transfer fluid. After further amplification viral DNA and cDNA were then pooled, fluorescently labeled, and hybridized onto a Combimatrix panvira 12K microarray containing probes for ∼1,000 known human viruses.
Technical Paper

The Thermal Design Evolution of the Phoenix Robotic Arm

2006-07-17
2006-01-2033
Phoenix, NASA's first Mars Scouts mission, will be launched in 2007 and will soft-land inside the Martian Arctic Circle, between north 65° and 72° North latitude, in 2008 to study the water history and to search for habitable zones. Similar to the IDD (Instrument Deployment Device) on the Mars Exploration Rovers (MER), Phoenix has a Robotic Arm (RA) which is equipped with a scoop to dig into the icy soil and to deliver the soil samples to instruments for scientific observations and measurements. As with MER, the actuators and the bearings of the Phoenix RA in a non-operating condition can survive the cold Martian night without any electrical power or any thermal insulation. The RA actuators have a minimum operating allowable flight temperature (AFT) limit of -55°C, so, warm-up heaters are required to bring the temperatures of all the RA actuators above the operating AFT limit prior to early morning operation.
Technical Paper

Mechanically Pumped Fluid Loop Technologies for Thermal Control of Future Mars Rovers

2006-07-17
2006-01-2035
Future planetary science missions planned for Mars are expected to be more complex and thermally challenging than any of the previous missions. For future rovers, the operational parameters such as landing site latitudes, mission life, distance traversed, and rover thermal energy to be managed will be significantly higher (two to five times) than the previous missions. It is a very challenging problem to provide an effective thermal control for the future rovers using traditional passive thermal control technologies. Recent investigations at the Jet Propulsion Laboratory (JPL) have shown that mechanical pump based fluid loops provide a robust and effective thermal control system needed for these future rovers. Mechanical pump based fluid loop (MPFL) technologies are currently being developed at JPL for use on such rovers. These fluid loops are planned for use during spacecraft cruise from earth to Mars and also on the Martian surface operations.
Technical Paper

Mars Science Laboratory Thermal Control Architecture

2005-07-11
2005-01-2828
The Mars Science Laboratory (MSL1) mission to land a large rover on Mars is being planned for Launch in 2009. As currently conceived, the rover would use a Multi-mission Radioisotope Thermoelectric Generator (MMRTG) to generate about 110 W of electrical power for use in the rover and the science payload. Usage of an MMRTG allows for a large amount of nearly constant electrical power to be generated day and night for all seasons (year around) and latitudes. This offers a large advantage over solar arrays. The MMRTG by its nature dissipates about 2000 W of waste heat. The basic architecture of the thermal system utilizes this waste heat on the surface of Mars to maintain the rover's temperatures within their limits under all conditions. In addition, during cruise, this waste heat needs to be dissipated safely to protect sensitive components in the spacecraft and the rover.
Technical Paper

Mars Exploration Rover Surface Mission Flight Thermal Performance

2005-07-11
2005-01-2827
NASA launched two rovers in June and July of 2003 as a part of the Mars Exploration Rover (MER) project. MER-A (Spirit) landed on Mars in Gusev Crater at 15 degrees South latitude and 175 degrees East longitude on January 4, 2004 (Squyres, et al., Dec. 2004). MER-B (Opportunity) landed on Mars in Terra Meridiani at 2 degrees South latitude and 354 degrees East longitude on January 25, 2004 (Squyres, et al., Aug. 2004). Both rovers have well exceeded their design lifetime (90 Sols) by more than a factor of 5. Spirit and Opportunity are still healthy and continue to execute their roving science missions at the time of this writing. This paper discusses rover flight thermal performance during the surface missions of both vehicles, covering roughly the time from the MER-A landing in late Southern Summer (aereocentric longitude, Ls = 328, Sol 1A) through the Southern Winter solstice (Ls = 90, Sol 255A) to nearly Southern Vernal equinox (Ls = 160, Sol 398A).
Technical Paper

Microbial Burden of Commercial Aircraft Cabin Air

2005-07-11
2005-01-3087
The microbial burdens of 69 cabin air samples collected in-flight aboard commercial airliners were assessed via culture-dependent and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 × 104 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on minimal medium, anywhere from 2 to 80% of the viable population was cultivable. Five of the 29 samples examined exhibited higher cultivable plate counts than ATP-derived viable counts, perhaps a consequence of the dormant nature (lower concentration of intracellular ATP) of cells inhabiting these air cabin samples.
Technical Paper

Extended Temperature Range Studies for Dry Heat Microbial Reduction

2005-07-11
2005-01-3096
Dry heat microbial reduction is an approved method to reduce the microbial bioburden on space-flight hardware prior to launch to meet flight project planetary protection requirements. Microbial bioburden reduction also occurs if a spacecraft enters a planetary atmosphere (e.g., Mars) and is heated by frictional forces. However, without further studies, administrative credit for this reduction cannot be applied. The killing of Bacillus subtilis var. niger spores has been examined and lethality data has been collected by placing spores in a vacuum oven or thermal spore exposure vessels (TSEV) in a constant temperature bath. Using this lethality data, a preliminary mathematical model is being developed that can be used to predict spore killing at different temperatures. This paper will present the lethality data that has been collected at this time and the planned future studies.
Technical Paper

Q-PCR Based Bioburden Assessment of Drinking Water Throughout Treatment and Delivery to the International Space Station

2005-07-11
2005-01-2932
Previous studies indicated evidence of opportunistic pathogens in samples obtained during missions to the International Space Station (ISS). This study utilized TaqMan quantitative PCR to determine specific gene abundance in potable and non-potable ISS waters. Probe and primer sets specific to the small subunit rRNA genes were designed and used to elucidate overall bacterial rRNA gene numbers. In addition, primer-probe sets specific for Burkholderia cepacia and Stenotrophomonas maltophilia were optimized and genes of these two opportunistic pathogens quantified in the pre- and post-flight drinking water as well as coolant waters. This Q-PCR approach supports findings of previous culture-based studies however; the culture based studies may have underestimated the microbial burden of ISS drinking water.
Technical Paper

Implications of the VBNC State of B. cepacia and S. maltophilia on Bioreduction and Microbial Monitoring of ISS Potable Waters

2005-07-11
2005-01-2933
Certain Eubacteria enter a viable but nonculturable (VBNC) state upon encountering unfavorable environmental conditions. VBNC cells do not divide on conventional media yet remain viable and in some cases retain virulence. Here, we describe the VBNC state of two opportunistic pathogens previously isolated from ISS potable waters, Burkholderia cepacia and Stenotrophomonas maltophilia. Artificially inoculated microcosms were exposed to the biocidal agents copper (CuSO4) and iodine (I2) in an attempt to induce nonculturablility. Viability was assessed via fluorescent microscopy (direct viable count assay coupled with BacLight™ staining) and metabolic activity was monitored by quantifying both intracellular ATP and transcribed rRNA (reverse transcriptase quantitative PCR). Culturablility was lost in both B. cepacia and S. maltophilia within two days of exposure to copper or high concentrations of iodine (6 or 8 ppm).
Technical Paper

Margin Determination in the Design and Development of a Thermal Control System

2004-07-19
2004-01-2416
A method for determining margins in conceptual-level design via probabilistic methods is described. The goal of this research is to develop a rigorous foundation for determining design margins in complex multidisciplinary systems. As an example application, the investigated method is applied to conceptual-level design of the Mars Exploration Rover (MER) cruise stage thermal control system. The method begins with identifying a set of tradable system-level parameters. Models that determine each of these tradable parameters are then created. The variables of the design are classified and assigned appropriate probability density functions. To characterize the resulting system, a Monte Carlo simulation is used. Probabilistic methods can then be used to represent uncertainties in the relevant models. Lastly, results of this simulation are combined with the risk tolerance of thermal engineers to guide in the determination of margin levels.
Technical Paper

Thermal Performance Evaluation of a Small Loop Heat Pipe for Space Applications

2003-07-07
2003-01-2688
A Small Loop Heat Pipe (SLHP) featuring a wick of only 1.27 cm (0.5 inches) in diameter has been designed for use in spacecraft thermal control. It has several features to accommodate a wide range of environmental conditions in both operating and non-operating states. These include flexible transport lines to facilitate hardware integration, a radiator capable of sustaining over 100 freeze-thaw cycles using ammonia as a working fluid and a structural integrity to sustain acceleration loads up to 30 g. The small LHP has a maximum heat transport capacity of 120 Watts with thermal conductance ranging from 17 to 21 W/°C. The design incorporates heaters on the compensation chamber to modulate the heat transport from full-on to full-stop conditions. A set of start up heaters are attached to the evaporator body using a specially designed fin to assist the LHP in starting up when it is connected to a large thermal mass.
Technical Paper

Evaluation of Sample Preservation Methods for Space Missions

2003-07-07
2003-01-2671
This study of samples collected from Mars 01 Orbiter was conducted to gain a better understanding and practical experience in methods to process and preserve samples intended for planetary protection analysis. Samples were evaluated for the viable growth of microbes, the molecular biomarker adenosine triphosphate (ATP), and the presence of lipopolysaccharide, a bacterial cell wall component. Losses were observed in the number of viable microbes after freezing as well as in the detectable lipopolysaccharide. Two independent studies of pooled cleanroom samples demonstrate good ATP recovery and consistent values after freezing at −20 °C.
X