Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Combined Longitudinal and Lateral Control for Automated Lane Guidance of Full Drive-by-Wire Vehicles

2015-04-14
2015-01-0321
This paper presents a simultaneous longitudinal and lateral motion control strategy for a full drive-by-wire autonomous vehicle. A nonlinear model predictive control (NMPC) problem is formulated in which the nonlinear prediction model utilizes a spatial transformation to derive the dynamics of the vehicle about the reference trajectory, which facilitates the acquisition of the tracking errors at varying speeds. A reference speed profile generator is adopted by taking account of the road geometry information, such that the lateral stability is guaranteed and the lane guidance performance is improved. Finally, the nonlinear multi-variable optimization problem is simplified by considering only three motion control efforts, which are strictly confined within a convex set and are readily distributed to the four tires of a full drive-by-wire vehicle.
Technical Paper

Research on Integrated Chassis Control Strategy for Four-Wheel Independent Control Electric Vehicle

2014-09-30
2014-01-2290
Four-wheel independent control electric vehicle is a new type of x-by-wire EV with four wheels independent steering and four wheels independent drive/brake systems. In order to take full advantage of the vehicle's performance potential, this paper presents a novel integrated chassis control strategy. In the paper, the strategy is designed by the hierarchical control structure and divided into integrated control layer and allocation layer. By this method, the control logical can be modularized and simplified. In the integrated control layer, Model Prediction Control (MPC) is adopted to design the integrated control unit, which belongs to be a kind of local optimization algorithm with feedback correction features. Using this method could avoid the system performance degradation caused by the control model mismatch. The control allocation layer is to optimally distribute the vehicle control forces to the steering/driving/brake actuators on each wheel.
Technical Paper

A Control Algorithm for Electric Power Steering of Tire Blowout Vehicle to Reduce the Impact Torque on Steering Wheel

2013-04-08
2013-01-1239
Impact torque will be generated on the steering wheel when one tire suddenly blows out on high way, which may cause driver's psychological stress and result in driver's certain misoperations on the car. In this paper, the model of tire blowout vehicle was established; the tire blowout was detected based on the change rate of tire pressure, meanwhile, the rack force caused by tire blowout was estimated through a reduce observer; finally the compensation current was figured out to reduce the impact torque on the steering wheel. Results of simulation tests showed that the control strategy proposed in this paper can effectively reduce the impact torque on the steering wheel and reduce the driver's discomfort caused by tire blowout.
X