Refine Your Search

Topic

Search Results

Technical Paper

Research on Multi-Vehicle Coordinated Lane Change of Connected and Automated Vehicles on the Highway

2019-04-02
2019-01-0678
With the rapid development of modern economy and society, traffic congestion has become an increasingly serious problem. Vehicle cooperative driving can alleviate traffic congestion and improve road traffic capacity. Compare with vehicle separate control, cooperative driving combines various vehicle systems, and highly integrates information on obstacle location, vehicle status and driving intention. Then the controller uniformly issues instructions to ensure the orderly driving of the platoon. In the cooperative driving platoon, the displacement difference and the speed difference between vehicles have a certain relationship, which reduces the possibility of traffic accidents and then improves the safety of driving. In the process of cooperative driving, if there are multiple vehicles whose speeds don’t meet the current lane requirements, or if there are obstacles ahead, multi-vehicle lane change measures must be taken.
Technical Paper

Effects of Environmental Parameters on Real-World NOx Emissions and Fuel Consumption for Heavy-Duty Diesel Trucks Using an OBD Approach

2018-09-10
2018-01-1817
OBD (On-Board Diagnostic) test system is applied to research influences of environmental parameters (altitude and environment temperature) on real-world NOx emission and fuel consumption for heavy-duty diesel trucks in this paper. The research results indicate that altitude and environment temperature have great influence on NOx emission rate and fuel consumption. High altitude in range of 3000~4000 m results in NOx emission rate is lower than low and moderate temperature because of air intake amount decreasing. However the fuel consumption rate is higher than lower altitude because altitude influences real-time changes of air inflow and combustion conditions in the cylinder of the engine. NOx emission rate and fuel consumption is more stable at different vehicle speed, VSP and RPM at high altitude, and NOx emission rate fluctuate dramatically at low and moderate altitude. The fuel consumption rate is higher at 10~20 °C than that at lower and higher temperature.
Technical Paper

Objective Evaluation Model of Automatic Transmission Shift Quality Based on Multi-Hierarchical Grey Relational Analysis

2018-04-03
2018-01-0405
Improvement of shift quality evaluation has become more prevalent over the past few years in the development of automatic transmission electronic control system. For the problems of the subjective shift quality evaluation that subjectivity is too strong, the standard cannot be unified and the definition of the objective evaluation index is not clear at present, this paper studies on the methods of objective evaluation of shift quality based on the multi-hierarchical grey relational analysis. Firstly, objective evaluation index system is constructed based on physical quantities, such as the engine speed, the longitudinal acceleration of the vehicle and so on, which broadens the scope of the traditional objective evaluation index further.
Technical Paper

Feasibility Study of Using WLTC for Fuel Consumption Certification of Chinese Light-Duty Vehicles

2018-04-03
2018-01-0654
This paper presents the feasibility study of using the worldwide harmonized light vehicles test cycle (WLTC) for the fuel consumption certification of Chinese Light-duty (LD) vehicles. First, the key steps and the technical routes of the development process of WLTC are summarized. Second, the operation data of 3082 vehicles in 41 typical cities of China are collected throughout the year. Then, the characteristics of the acquisition data are compared with WLTC. Finally, the feasibility of using WLTC for fuel consumption certification of Chinese LD vehicles is analyzed in three aspects, includes operation characteristics, weighting factors and fuel consumption. The result shows that there is obvious difference between WLTC and Chinese reality, and WLTC is not suitable for the fuel consumption certification of Chinese LD vehicles.
Technical Paper

Control Optimization of a Charge Sustaining Hybrid Powertrain for Motorsports

2018-04-03
2018-01-0416
The automotive industry is aggressively pursuing fuel efficiency improvements through hybridization of production vehicles, and there are an increasing number of racing series adopting similar architectures to maintain relevance with current passenger car trends. Hybrid powertrains offer both performance and fuel economy benefits in a motorsport setting, but they greatly increase control complexity and add additional degrees of freedom to the design optimization process. The increased complexity creates opportunity for performance gains, but simulation based tools are necessary since hybrid powertrain design and control strategies are closely coupled and their optimal interactions are not straightforward to predict. One optimization-related advantage that motorsports applications have over production vehicles is that the power demand of circuit racing has strong repeatability due to the nature of the track and the professional skill-level of the driver.
Technical Paper

Hierarchical Framework for Adaptive Cruise Control with Model Predictive Control Method

2017-09-23
2017-01-1963
Adaptive cruise control (ACC), as one of the advanced driver assistance systems (ADAS), has become increasingly popular in improving both driving safety and comfort. Since the objectives of ACC can be multi-dimensional, and often conflict with each other, it is a challenging task in its control design. The research presented in this paper takes ACC control design as a constrained optimization problem with multiple objectives. A hierarchical framework for ACC control is introduced, aimed to achieve optimal performance on driving safety and comfort, speed and/or distance tracking, and fuel economy whenever possible. Under the hierarchical framework, the operational mode is determined in the upper layer, in which a model predictive control (MPC) based spacing controller is employed to deal with the multiple control objectives. On the other hand, the lower layer is for actuator control, such as braking and driving control for vehicle longitudinal dynamics.
Technical Paper

The Development of a Small Restricted Turbocharged Racecar Engine

2016-11-08
2016-32-0061
This paper summarized the development methodology and technical experiences on Formula Student racecar engines acquired by Jilin University from 2011 to 2015. This series of engines are all based on 600cc 4-cylinder motorcycle gasoline engines and were modified to turbocharged engines which met the Formula Student technical regulations, in order to achieve higher power output, wider torque band as well as lower fuel consumption. During the development process, multiple research projects have been conducted surrounding the turbocharging technology. These research projects have covered multiple areas including the matching of the flow rate characteristics of the engine and the turbocharger, the design of intake and exhaust systems, research on the wastegate as well as its actuator, the tuning and control of the boost pressure as well as the design of the lubrication system for the turbocharger, etc.
Technical Paper

Performance Analysis of Multi-Speed Torque Coupler for Hybrid Electric Vehicle

2016-04-05
2016-01-1149
A novel torque-coupling architecture for hybrid electric vehicles is proposed. The torque-coupling device is based on automated manual transmission (AMT), which is highly efficient and provides six gears for the engine and three gears for each motor to enable the engine and the motors to work at high-efficiency levels in most cases. The proposed power-shift AMT (P-AMT) does not have a hydraulic torque converter and wet clutches, which dampen the driveline shock. Thus, the drivability control of the P-AMT becomes a challenging issue. Accurate engine, motor model and transmission model have been built and the dynamic control of the gear shift process of PAMT in hybrid mode is simulated. The electric motors compensate for the traction loss during the gear shift of the engine.
Technical Paper

Control Strategy of Hybrid Electric Vehicle with Double Planetary Gear Sets

2015-04-14
2015-01-1216
Hybrid Electric Vehicles with a power split system provide a variety of possibilities to promote the fuel economy of vehicles and better adapt to various driving conditions. In this paper, a new power split system of a hybrid electric bus which consists of double planetary gear sets and a clutch is introduced. The system is able to decouple both the torque and speed of the engine from the road load, which makes it possible for the engine to operate on its optimal operation line (OOL). Considering the features of the system configuration and bus driving cycle, the driving mode of the bus is divided into Electric Vehicle (EV) mode, Electric Variable Transmission (EVT) mode and Parallel mode. By controlling the engagement of the clutch at high vehicle speed (after the mechanical point), the system operates in the parallel mode rather than EVT mode. This avoids the problem that the system efficiency sharply declines in high speed region which EVT configurations are generally faced with.
Technical Paper

Optimization for Driveline Parameters of Self-Dumping Truck Based on Particle Swarm Algorithm

2015-04-14
2015-01-0472
In this study, with the aim of reducing fuel consumption and improving power performance, the optimization for the driveline parameters of a self-dumping truck was performed by using a vehicle performance simulation model. The accuracy of this model was checked by the power performance and fuel economy tests. Then the transmission ratios and final drive ratio were taken as design variables. Meanwhile, the power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, maximum speed and maximum gradeability, while the combined fuel consumption of C-WTVC drive cycle was taken as an evaluation index of fuel economy. The multi-objective optimization for the power performance and fuel economy was then performed based on particle swarm optimization algorithm, and the Pareto optimal set was obtained. Furthermore, the entropy method was proposed to determine the weight of fuel consumption and acceleration time.
Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
Technical Paper

An Experimental Investigation of the Combustion Characteristics of Acetone-Butanol-Ethanol-Diesel Blends with Different ABE Component Ratios in a Constant Volume Chamber

2014-04-01
2014-01-1452
Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuel which typically emit less pollutants compared to conventional diesel, but also lowers the cost of fuel recovery for each individual component during the fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly. ABE fuels with different component ratio, (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %), were blended with diesel and tested in a constant volume chamber.
Technical Paper

Vehicle Occupant Posture Classification System using Seat Pressure Sensor for Intelligent Airbag

2009-04-20
2009-01-1254
In the intelligent airbag system, the detection accuracy of occupant position is the precondition and plays a vital role to control airbag detonation time and inflated strength during the crash. Through accurately analyzing the seat surface pressure distributions of different occupant sitting position and types, an occupant position recognition approach which purely uses occupant pressure distribution information measured by seat pressure sensors is presented with the method of Support Vector Machine. In the end, the distribution samples with different occupant sitting position and types are used to train and test the recognition approach, and the good validity and accuracy are shown in the experiments.
Technical Paper

Impact Theory Based Total Cylinder Sampling System and its Application

2008-06-23
2008-01-1795
A novel non-destroy repeatable-use impact theory based total cylinder sampling system has been established. This system is mainly composed of a knocking body and a sampling valve. The knocking body impacts the sampling valve with certain velocity resulting in huge force to open the sampling valve and most of the in-cylinder gas has been dumped to one sampling bag for after-treatment. The feasibility and sampling response characteristics of this impact theory based total cylinder sampling system were investigated by engine bench testing. Within 0 to 35°CA ATDC (Crank Angle After Top Dead Center) sample timing 50 percent to 80 percent of in-cylinder mass would be sampled, which was a little less compared with the traditional system. The half decay period of pressure drop was 10 to 20 degrees crank angle within 0 to 60°CA ATDC sample timing, which was about 2-3 times of the traditional system.
Technical Paper

Development and Validation of New Control Algorithm for Parallel Hybrid Electric Transit Bus

2006-10-31
2006-01-3571
The new control algorithm for parallel hybrid electric vehicle is presented systematically, in which engine operation points are limited within higher efficient area by the control algorithm and the state of charge (SOC) is limited in a range in order to enhance the batteries' charging and discharging efficiency. In order to determine the ideal operating point of the vehicle's engine, the control strategy uses a lookup table to determine the torque output of the engine. The off-line simulation model of parallel HEV power train is developed which includes the control system and controlled objective (such as engine, electric motor, battery pack and so on). The results show that the control algorithm can effectively limite engine and battery operation points and much more fuel economy can be achieved than that of conventional one.
Technical Paper

Matching Optimum for Low HC and CO Emissions at Warm-up Phase in an LPG EFI Small SI Engine

2005-10-24
2005-01-3897
Based on a 125cm3 single cylinder SI engine, the designated idle speed was controlled by adjusting of cycle ignition advance angle. By analyzing the effects of different idle speed and throttle open position on three way catalyst (TWC) light-off time and conversion efficiency of HC and CO emissions, combined with the corresponding total HC and CO emissions level, the optimum idle speed and throttle open position at engine's warm-up phase were found by the matching optimum. The present method for engine control strategy is helpful to optimize the warm-up phase emission levels in SI engine with LPG fuel.
Technical Paper

Research on a Neural Network Model Based Automatic Shift Schedule with Dynamic 3-Parameters

2005-04-11
2005-01-1597
To reach the goal of optimal performance match between engine and transmission, the dynamic characteristics of engine should be taken into consideration. In the paper, the dynamic torque and fuel consumption models of engine, described by a multi-layers feed forward neural network, were established. Based on that, the methods used to calculate the optimal dynamic and economical shift schedules with dynamic 3-parameters were put forward. The shift schedule with dynamic 3-parameters based on neural network model is proven to be superior to the shift schedule with only 2-parameters in both dynamic performance and fuel economy by the test.
Technical Paper

Characteristics of Particulate Emissions Fueled with LPG and Gasoline in a Small SI Engine

2004-10-25
2004-01-2901
This paper presents experimental studies of particulate emissions in a small SI engine fueled with LPG and gasoline fuels. A single cylinder, four-stroke, water-cooled, 125cc EFI engine with gasoline fuel is used as the baseline engine. Characteristics of the particulate emissions of the two fuels are compared. Test results show that: there are great quantities of particulate emissions for both fuels, but the total numbers of particulate emissions for the two fuels are generally in the same level. The distribution of the particulate sizes is in bimodal type for the gasoline, but for the LPG its first peak is not markedly in some conditions. The particulate sizes of the second peak for the two fuels appear at about the same size. At middle loads and 3000r/min, the particulate emissions for both of the two fuels are the greatest.
Technical Paper

Combined Control Strategy for Engine Rotate Speed in the Shift Process of Automated Mechanical Transmission

2004-03-08
2004-01-0427
For the purpose of lessening fuel consumption, engine noise, shift jerk and clutch friction work in the shift process of Automatic Mechanical Transmission (AMT), a fuzzy-bang bang dual mode control strategy for engine rotate speed is put forward in this paper, which takes the advantages of time optimal control and fuzzy control. The combined control strategy is applied to the shift process control of AMT test minibus named SC6350 and proved to be successful by the experimental results.
Technical Paper

Parametric Design of Series Hybrid Power-train for Transit Bus

2003-11-10
2003-01-3371
Utilizing the developed off-line simulation model of series hybrid power train the study on the influence of components' parameters on acceleration performance and fuel economy of transit bus is completed. Based on these the guideline strategies of parametric design of series hybrid power train for transit bus are brought forward in this paper. Given the condition of propulsion requirement the parametric design for this transit bus are performed targeting minimizing fuel consumption. It is conclusion that the appropriate components' parameters determined by means of parametric design can make series hybrid transit bus achieve much better acceleration performance and much lower fuel equivalent consumption than that of baseline transit bus.
X