Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of Emission Control Systems to Enable High NOx Conversion on Heavy Duty Diesel Engines

2014-04-01
2014-01-1525
Selective Catalytic Reduction (SCR) systems have been demonstrated as effective solutions for controlling NOx emissions from Heavy Duty diesel engines. Future HD diesel engines are being designed for higher engine out NOx to improve fuel economy, which will require increasingly higher NOx conversion to meet emission regulations. For future aftertreatment designs, advanced technologies such as SCR coated on filter (SCRF®) and SCR coated on high porous flow through substrates can be utilized to achieve high NOx conversion. In this work, different options were evaluated for achieving high NOx conversion. First, high performance NOx control catalysts were designed by using SCRF unit followed by additional SCR on high porosity substrates. Second, different control strategies were evaluated to understand the effect of reductant dosing strategy and thermal management on NOx conversion. Tests were carried out on a HD engine under transient test cycles.
Journal Article

Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications

2011-04-12
2011-01-1312
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. Typical 2010 Heavy-Duty systems include a DOC along with a catalyzed soot filter (CSF) in addition to the SCR sub-assembly. There is a strong desire to further increase the NOx conversion capability of such systems, to enable additional fuel economy savings by allowing engines to be calibrated to higher engine-out NOx levels. One potential approach is to replace the CSF with a diesel particulate filter coated with SCR catalysts (SCR-DPF) while keeping the flow-through SCR elements downstream, which essentially increases the SCR volume in the after-treatment assembly without affecting the overall packaging. In this work, a system consisting of SCR-DPF was evaluated in comparison to the DOC + CSF components from a commercial 2010 DOC + CSF + SCR system on an engine with the engine EGR on (standard engine-out NOx) and off (high engine-out NOx).
Technical Paper

Decoupling the Interactions of Hydrocarbons and Oxides of Nitrogen Over Diesel Oxidation Catalysts

2011-04-12
2011-01-1137
Oxidation of NO to NO₂ over a Diesel Oxidation Catalyst (DOC) plays an important role in different types of aftertreatment systems, by enhancing NOx storage on adsorber catalysts, improving the NOx reduction efficiency of SCR catalysts, and enabling the passive regeneration of Diesel Particulate Filters (DPF). The presence of hydrocarbon (HC) species in the exhaust is known to affect the NO oxidation performance over a DOC; however, specific details of this effect, including its underlying mechanism, remain poorly understood. Two major pathways are commonly considered to be responsible for the overall effect: NO oxidation inhibition, due to the presence of HC, and the consumption of the NO₂ produced by reaction with hydrocarbons. In this work we have attempted to decouple these two pathways, by adjusting the catalyst inlet concentrations of NO and NO₂ to the thermodynamic equilibrium levels and measuring the composition changes over the catalyst in the presence of HC species.
X