Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Understanding the Role of Filtered EGR on PM Emissions

2011-08-30
2011-01-2080
In earlier work we have shown that engine operation with oxygenated fuels (e.g., biodiesel) reduces the particulate matter (PM) emissions and extends the engine tolerance to exhaust gas recirculation (EGR) before it reaches smoke limited conditions. The same result has also been reported when high cetane number fuels such as gas-to-liquid (GTL) are used. A likely mechanism for engine-out particulate growth is the reintroduction of particle nuclei into the cylinder through EGR. These recirculated PM particles serve as sites for further condensation and accumulation promoting larger and greater number of particles. In order to further our understanding of EGR influence on total PM production, a diesel particulate filter (DPF) was integrated into the EGR loop. A PM reduction of approximately 50% (soot) was achieved with diesel fuel through filtered EGR, whilst still maintaining a significant NOX reduction.
Technical Paper

Activity of Prototype Catalysts on Exhaust Emissions from Biodiesel Fuelled Engines

2008-10-06
2008-01-2514
A prototype catalyst has been developed and integrated within the aftertreatment exhaust system to control the HC, CO, PM and NOx emissions from diesel exhaust gas. The catalyst activity in removing HC and nano-particles was examined with exhaust gas from a diesel engine operating on biodiesel - Rapeseed Methyl Ester (RME). The tests were carried out at steady-state conditions for short periods of time, thus catalyst tolerance to sulphur was not examined. The prototype catalyst reduced the amount of hydrocarbons (HC) and the total PM. The quantity of particulate with electrical mobility diameter in nucleation mode size < 10nm, was significantly reduced over the catalyst. Moreover, it was observed that the use of EGR (20% vol.) for the biodiesel fuelled engine significantly increases the particle concentration in the accumulation mode with simultaneous reduction in the particle concentration in the nuclei mode.
X