Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Experimental and Modelling Study of Cold Start Effects on a Cu-Zeolite NH3 Selective Catalytic Reduction Catalyst

2015-09-01
2015-01-2011
Microreactor, engine bench tests and modelling studies have been carried out to understand the influence of cold start (low temperatures) on the performance of NH3/urea-SCR automotive exhaust aftertreatment systems. Water storage experiments using Simultaneous Thermal Analysis (STA) coupled with numerical modelling demonstrated that the exo/endo-therms associated with water adsorption and desorption at temperatures below 150°C strongly influence the catalyst temperature. Appreciable amounts of NO and NO2 could be stored on the catalyst during reactor or engine testing in the absence of any NH3 (blank tests). Modelling studies at different inlet NO2/NOx ratios demonstrated some of the influences of these surface adsorbed species on the performance of the SCR system during cold start.
Journal Article

Reformate Exhaust Gas Recirculation (REGR) Effect on Particulate Matter (PM), Soot Oxidation and Three Way Catalyst (TWC) Performance in Gasoline Direct Injection (GDI) Engines

2015-09-01
2015-01-2019
Gasoline direct injection (GDI) engines have become very attractive in transportation due to several benefits over preceding engine technologies. However, GDI engines are associated with higher levels of particulate matter (PM) emissions, which is a major concern for human health. The aim of this work is to broaden the understanding of the effect of hydrogen combustion and the influence of the three way catalytic converter (TWC) on PM emission characteristics. The presence of hydrogen in GDI engines has been reported to reduce fuel consumption and improve the combustion process, making it possible to induce higher rates of EGR. A prototype exhaust fuel reformer build for on-board vehicle hydrogen-rich gas (reformate) production has been integrated within the engine operation and studied in this work.
Journal Article

The Effect of Pt:Pd Ratio on Light-Duty Diesel Oxidation Catalyst Performance: An Experimental and Modelling Study

2015-04-14
2015-01-1053
This paper presents a two-part study on the effect of Pt:Pd ratio (at a constant total Pt+Pd loading of 120 g ft−3) on the catalytic performance of a Diesel Oxidation Catalyst (DOC) intended for light-duty applications, covering ratios across the full range from 100% Pd to 100% Pt. (Work on a heavy-duty DOC is presented in SAE 2015-01-1052). The first part of this paper presents a reactor study on the effect of Pt:Pd ratio on the catalytic activity of key reactions occurring individually over the DOC, including the oxidation of CO, C3H6, n-C10H22, CH4 and NO. For some reactions, activity increases continuously with Pt content (oxidation of n-C10H22 and NO); in contrast the activity for CH4 oxidation increases with decreasing Pt content (increasing Pd content), while CO and C3H6 oxidation exhibit more complicated dependencies. The second part presents the development of a one-dimensional model capable of predicting the effect of Pt:Pd ratio on DOC performance.
Journal Article

Factors Affecting Three-Way Catalyst Light-Off: A Simulation Study

2014-04-01
2014-01-1564
Achieving early catalyst light-off is crucial if stringent emissions standards are to be met; if light-off is late, the emissions limit could be exceeded even before the catalyst starts to work. This paper presents a detailed simulation study of the factors affecting the light-off of a TWC. Simulation is not just faster and cheaper than vehicle testing, it also enables more insight into the factors affecting catalyst performance to be obtained. For example, changing the substrate (cell density and wall thickness) affects the rates of heat and mass transport, as well as the thermal mass of the catalyst. In a vehicle test, all three factors are changed at once, but with a simulation each of these factors can implemented one at time to enable the relative importance of these factors to be determined.
Journal Article

Removal of Hydrocarbons and Particulate Matter Using a Vanadia Selective Catalytic Reduction Catalyst: An Experimental and Modeling Study

2013-04-08
2013-01-1071
The use of vanadia selective catalytic reduction (V-SCR) catalysts for NOX reduction from diesel engine exhaust is well known. These catalysts are also active for hydrocarbon (HC) and particulate matter (PM) oxidation. This dual functionality (oxidation and reduction) of V-SCR catalysts can help certain applications achieve the legislative limits with an improved margin. In this work, NOX reduction, HC and CO oxidation over V-SCR were studied independently and simultaneously in microreactor tests. The effect of various parameters (HC speciation, concentration, ANR, and NO₂/NOX ratio) was investigated and the data was used to develop a kinetic model. Oxidation of CO, C₃H₆, and n-C₁₀H₂₂ is first order in CO/HC, while C₇H₈ oxidation is less than first order in C₇H₈. All these reactions were zero order in O₂. Oxidation activity decreased in order: C₇H₈ ≻ n-C₁₀H₂₂ ≻ C₃H₆ ≻ CO. HC oxidation was inhibited by NH₃.
Technical Paper

Modeling of Dual Layer Ammonia Slip Catalysts (ASC)

2012-04-16
2012-01-1294
In recent years, ammonia slip catalysts (ASC) are being used downstream of an SCR system to minimize the ammonia slip. The dual-layer ASC is more attractive for its bi-functionality in reducing the ammonia and NOX emissions. It consists of two layers with the upper layer comprising a component with SCR functionality and the lower layer a PGM containing catalyst with oxidation functionality. Thus, both oxidation and SCR reactions take place in two different layers and are interlinked by the inter-layer mass transfer mechanism. In addition, adsorption and desorption kinetics between the gas and solid phases play a significant role. Mathematically, the overall system is a complex system of mass, momentum and energy transfer equations with temporal and spatial variables in both axial and radial directions. In this work, we focus on devising a suitable, computationally inexpensive model for such ASCs to be efficiently used for design, control and system optimization studies.
Technical Paper

Microkinetic Modelling for Propane Oxidation in Channel Flows of a Silver-Based Automotive Catalytic Converter

2011-08-30
2011-01-2094
Computational Fluid Dynamics (CFD) is used to simulate chemical reactions and transport phenomena occurring in a single channel of a honeycomb-type automotive catalytic converter under lean burn combustion. Microkinetic analysis is adopted to develop a detailed elementary reaction mechanism for propane oxidation on a silver catalyst. Activation energies are calculated based on the theory of the Unity Bond Index-Quadratic Exponential Potential (UBI-QEP) method. The order-of-magnitude of the pre-exponential factors is obtained from Transition State Theory (TST). Sensitivity analysis is applied to identify the important elementary steps and refine the pre-exponential factors of these reactions. These pre-exponential factors depend on inlet temperatures and propane concentration; therefore optimised pre-exponential factors are written in polynomial forms. The results of numerical simulations are validated by comparison with experimental data.
Technical Paper

Understanding the Role of Filtered EGR on PM Emissions

2011-08-30
2011-01-2080
In earlier work we have shown that engine operation with oxygenated fuels (e.g., biodiesel) reduces the particulate matter (PM) emissions and extends the engine tolerance to exhaust gas recirculation (EGR) before it reaches smoke limited conditions. The same result has also been reported when high cetane number fuels such as gas-to-liquid (GTL) are used. A likely mechanism for engine-out particulate growth is the reintroduction of particle nuclei into the cylinder through EGR. These recirculated PM particles serve as sites for further condensation and accumulation promoting larger and greater number of particles. In order to further our understanding of EGR influence on total PM production, a diesel particulate filter (DPF) was integrated into the EGR loop. A PM reduction of approximately 50% (soot) was achieved with diesel fuel through filtered EGR, whilst still maintaining a significant NOX reduction.
Technical Paper

Development and Validation of a Cu-Zeolite SCR Catalyst Model

2011-04-12
2011-01-1299
A one-dimensional numerical model for a Cu-zeolite SCR catalyst has been developed. The model is based on kinetics developed from laboratory microreactor data for the various NH₃-NOX reactions, as well as for NH₃ oxidation. The kinetic scheme used is discussed and evidence for it presented. The model is capable of predicting the conversion of NO and NO₂, NH₃ slip and the formation of N₂O, as well as effects associated with NH₃ storage and desorption. To obtain a good prediction of catalyst temperature during cold start tests, it was found necessary to include storage and desorption of H₂O in the model; storage of H₂O is associated with a sizable exotherm and the subsequent desorption of this water produces a correspondingly large endotherm.
Technical Paper

Modeling of Non-Road Diesel Exhaust Aftertreatment Systems: Diesel Oxidation and Selective Catalytic Reduction Catalysts

2010-10-25
2010-01-2092
The aftertreatment challenge in the non-road market is making the same system work and fit not just in one machine, but in hundreds of different machines, some of which can be used for many different purposes. This huge diversity of applications and the relatively small unit numbers for each application, coupled with the rapid introduction of new standards and the very high performance needed from the engines and machines, requires a sophisticated approach to product development. Furthermore, as emissions requirements become ever more stringent, designing a system to meet the legislation subject to packaging and cost constraints becomes progressively more difficult. This is further exacerbated by increasing system complexity, where more than one technology may be required to control all the legislated pollutants and/or an active control strategy is involved. Also a very high degree of component integration is required.
Journal Article

Modeling the Emissions Control Performance of a Catalyzed Diesel Particulate Filter (CDPF) System for Light Duty Diesel Applications

2009-04-20
2009-01-1266
The use of catalyzed diesel particulate filter (CDPF) systems in light duty diesel (LDD) vehicles is becoming increasingly common. The primary functions of the system are to remove carbon monoxide (CO) and hydrocarbons (HC) from the vehicle exhaust stream, while simultaneously reducing the level of particulate matter (PM) emissions to ambient background levels. These systems can comprise either a separate diesel oxidation catalyst (DOC) and a downstream CDPF, or a single unit CDPF with the DOC functions incorporated within the CDPF. The single CDPF unit provides higher regeneration efficiency as it is located nearer to the engine and also cost benefits, as only a single unit is required compared to the alternative separate DOC and CDPF arrangement. A model describing the performance of the single unit CDPF for emissions control has been developed, with particular emphasis on achieving predictions of the CO and HC emissions over transient vehicle drive cycles.
Technical Paper

Activity of Prototype Catalysts on Exhaust Emissions from Biodiesel Fuelled Engines

2008-10-06
2008-01-2514
A prototype catalyst has been developed and integrated within the aftertreatment exhaust system to control the HC, CO, PM and NOx emissions from diesel exhaust gas. The catalyst activity in removing HC and nano-particles was examined with exhaust gas from a diesel engine operating on biodiesel - Rapeseed Methyl Ester (RME). The tests were carried out at steady-state conditions for short periods of time, thus catalyst tolerance to sulphur was not examined. The prototype catalyst reduced the amount of hydrocarbons (HC) and the total PM. The quantity of particulate with electrical mobility diameter in nucleation mode size < 10nm, was significantly reduced over the catalyst. Moreover, it was observed that the use of EGR (20% vol.) for the biodiesel fuelled engine significantly increases the particle concentration in the accumulation mode with simultaneous reduction in the particle concentration in the nuclei mode.
Technical Paper

On board Exhaust Gas Reforming of Gasoline Using Integrated Reformer & TWC

2007-09-16
2007-24-0078
Producing on-board the hydrogen that is to be used as supplementary fuel by exhaust gas reforming of gasoline shows encouraging results. Extensive research has been done at the University of Birmingham towards on board generation of hydrogen-rich gaseous fuel. Exhaust gas reforming which utilizes water vapor and enthalpy from the hot engine exhaust gas was applied using a compact system of a fuel reformer reactor integrated with the three way catalytic converter (TWC). Such system can be fitted in the limited space close to the engine. The device has been designed and built in concentric shape with the catalytic converter as a core and the reformer in an annular shape outside, to best utilize the waste heat from the catalytic converter. It requires very little extra space beyond the baseline catalytic converter.
Technical Paper

Passive NOx Reduction Activity of a Silver Catalyst under Real Diesel-Engine Exhaust Conditions

2007-07-23
2007-01-1917
The hydrocarbon-SCR activity of a silver catalyst has been examined using actual exhaust gas from a diesel engine, without any fuel being added to the reactor inlet. This work is a further step in the development of an active lean-NOx catalyst for aftertreatment of exhaust streams that contain an excess of hydrocarbon relative to NOx. The engine tests follow on from laboratory studies, in which the activity was related to the composition and formulation of the catalyst, the concentration and speciation of the hydrocarbon reductants, and the composition and temperature of simulated exhaust gas. In all the tests described here, the exhaust gas has been provided by an engine operating on ultra-low sulphur diesel fuel. NOx-reduction has been measured as a function of engine load, engine speed, in-cylinder fuel injection timing, exhaust gas temperature, and exhaust gas recirculation. Over 60% conversion to N2 has been achieved at exhaust gas temperatures around 290°C.
Technical Paper

Exhaust gas fuel reforming for IC Engines using diesel type fuels

2007-07-23
2007-01-2044
Control of NOx and Particulate Matter (PM) emissions from diesel engines remains a significant challenge. One approach to reduce both emissions simultaneously without fuel economy penalty is the reformed exhaust gas recirculation (REGR) technique, where part of the fuel is catalytically reacted with hot engine exhaust gas to produce a hydrogen-rich combustible gas that is then fed to the engine. On the contrary to fuel cell technology where the reforming requirements are to produce a reformate with maximized H2 concentration and minimized (virtually zero) CO concentration, the key requirement of the application of the exhaust gas fuel reforming technique in engines is the efficient on-demand generation of a reformate with only a relatively low concentration of hydrogen (typically up to 20%).
Technical Paper

Development and Application of a 1-Dimensional Model for a NOx Trap System

2006-10-16
2006-01-3445
A one-dimensional model of a NOx trap system was developed to describe NOx storage during the lean operation, and NOx release and subsequent reduction during the rich regeneration process. The development of a NOx trap model potentially enables the optimisation of catalyst volume, precious metal loading, substrate type and regeneration strategy for these complex systems. To develop a fundamental description of catalytic activity, experiments were conducted to investigate the key processes involved in isolation (as far as possible), using a Pt/Rh/BaO/Al2O3 model catalyst. A description of the storage capacity as a function of temperature was determined using NOx breakthrough curves and the storage portion of more dynamic lean-rich cycling experiments. NOx breakthrough curves were also used for determination of rate of NOx storage. Kinetics for NOx reduction, as well as CO and HC oxidation, were determined using steady state reactor experiments.
Technical Paper

Strategies for Gasoline Particulate Emission Control - A “Foresight Vehicle” Project

2002-06-03
2002-01-1894
The health threat from sub-100 nm particulates, emitted in significant numbers from gasoline vehicles, and anticipated changes in legislation to address this, have prompted investigation of techniques capable of trapping and oxidizing particulates from gasoline engines. Numerical studies have indicated that cooling to encourage particle capture by thermophoresis is less effective than use of electrostatic fields. A laboratory wire-cylinder electrostatic trap is under development, showing promising initial results. As an alternative trapping technique, the effectiveness of a cordierite wall-flow filter has been demonstrated, in simulation experiments and on a GDI-engined vehicle. Catalysts have been identified for particulate oxidation at typical exhaust temperatures, using water vapour and carbon dioxide as the oxygen source and retaining activity after short-term high-temperature aging.
Technical Paper

The Impact of Sulphur Storage on Emissions From Three-Way Catalysts

1987-11-01
872163
The relationship between H2S emissions from three-way catalysts and the storage of sulphur on the catalyst surface has been investigated. Thermodynamic data predict that sulphur storage primarily will occur on Al2O3 and CeO2 under lean and stoichiometric conditions, at up to 500°C. Rich transients could then induce the decomposition of the Ce-S-O and Al-S-O compounds, releasing sulphur into the gas phase. Experimental studies have supported this model. A mechanism has been proposed for the subsequent formation of H2S. The mechanism by which catalyst poisons attenuate H2S emissions from engine-aged catalysts also has been studied. The effect has been shown to be related to decreased storage of sulphur, caused by stable catalyst-poison species at the catalyst surface.
X