Refine Your Search

Topic

Search Results

Technical Paper

Effects of pre-chamber specifications on lean burn operation in a pre-chamber engine with fuel reformed gas

2023-09-29
2023-32-0007
Lean combustion has been well known to be an effective method to improve the thermal efficiency. However, leaner mixture is prone to cause the unstable combustion and poorer unburned hydrocarbon (UTHC) emissions. Pre-chamber turbulent jet combustion has been proved to enhance the combustion stability under ultra-lean conditions. However, more NOx is formed during the combustion, resulting in the fact that the tailpipe NOx emission is too high to be still not available for the real application. In this report, in order to achieve a higher air excess ratio while keeping lower UTHC emissions, and especially NOx emission, a new combustion technique which combined pre-chamber jet combustion with fuel reforming was proposed and experimentally demonstrated on a pre-chamber engine.
Technical Paper

Thermal efficiency improvement in twin shaped semi- premixed diesel combustion with a combustion chamber dividing fuel sprays and optimization of fuel ignitability

2023-09-29
2023-32-0051
The authors have reported significant smoke reduction in twin shaped semi-premixed diesel combustion with a newly designed combustion chamber to distribute the first and the second sprays into upper and lower layers. However, the first stage premixed combustion tends to advance far from the TDC, resulting in lowering of thermal efficiencies. In this report, improvement of thermal efficiency by optimizing the combustion phase with lower ignitability fuels was identified with the divided combustion chamber. The experiment was conducted with four fuels with different cetane numbers. The first stage premixed combustion can be retarded to the optimum phase with the fuel with cetane number 38, establishing high efficiencies.
Technical Paper

Thermal Efficiency Improvements with Split Primary Fuel Injections in Semi-Premixed Diesel Combustion with Multi-Peak Shaped Heat Release

2019-12-19
2019-01-2170
To improve the combustion characteristics in semi-premixed diesel combustion, consisting in the first-stage premixed combustion of the primary fuel injection and the second-stage spray combustion of the secondary injection, the effect of splitting the primary injection was investigated in a diesel engine and analyzed with a CFD. The indicated thermal efficiency improves due to reductions in heat transfer losses to the in-cylinder wall and the combustion noise is suppressed with the split primary injections. The CFD analysis showed that the reduction in heat transfer loss with the split primary injections is due to a decrease in the combustion quantity near the combustion chamber wall.
Technical Paper

Kinetic Modeling of Ammonia-SCR and Experimental Studies over Monolithic Cu-ZSM-5 Catalyst

2019-01-15
2019-01-0024
Ammonia-selective catalytic reduction (SCR) systems have been introduced commercially in diesel vehicles, however catalyst systems with higher conversion efficiency and better control characteristics are required to know the actual emissions during operation and the emissions in random test cycles. Computational fluid dynamics (CFD) is an effective approach when applied to SCR catalyst development, and many models have been proposed, but these models need experimental verification and are limited in the situations they apply to. Further, taking account of redox cycle is important to have better accuracy in transient operation, however there are few models considering the cycle. Model development considering the redox reactions in a zeolite catalyst, Cu-ZSM-5, is the object of the research here, and the effects of exhaust gas composition on the SCR reaction and NH3 oxidation at high temperatures are investigated.
Technical Paper

Phenomenological Modeling and Experiments to Investigate the Combined Effects of High Pressure and Multiple Injection Strategies with EGR on Combustion and Emission Characteristics of a CRDI Diesel Engine

2019-01-15
2019-01-0056
Nowadays, due to stringent emission regulations, it is imperative to incorporate modeling efforts with experiments. This paper presents the development of a phenomenological model to investigate the effects of various in-cylinder strategies on combustion and emission characteristics of a common-rail direct-injection (CRDI) diesel engine. Experiments were conducted on a single-cylinder, supercharged engine with displacement volume of 0.55 l at different operating conditions with various combinations of injection pressure, number of injections involving single injection and multiple injections with two injection pulses, and EGR. Data obtained from experiments was also used for model validation. The model incorporated detailed phenomenological aspects of spray growth, air entrainment, droplet evaporation, wall impingement, ignition delay, premixed and mixing-controlled combustion rates, and emissions of nitrogen oxides (NOx) and diesel soot.
Technical Paper

Aerodynamic Pitching Stability of Sedan-Type Vehicles Influenced by Pillar-Shape Configurations

2013-04-08
2013-01-1258
The present study investigated the aerodynamic pitching stability of sedan-type vehicles under the influence of A- and C-pillar geometrical configurations. The numerical method used for the investigation is based on the Large Eddy Simulation (LES) method. Whilst, the Arbitrary Lagrangian-Eulerian (ALE) method was employed to realize the prescribed pitching oscillation of vehicles during dynamic pitching and fluid flow coupled simulations. The trailing vortices that shed from the A-pillar and C-pillar edges produced the opposite tendencies on how they affect the aerodynamic pitching stability of vehicles. In particular, the vortex shed from the A-pillar edge tended to enhance the pitching oscillation of vehicle, while the vortex shed from the C-pillar edge tended to suppress it. Hence, the vehicle with rounded A-pillar and angular C-pillar exhibited a higher aerodynamic damping than the vehicle with the opposite A- and C-pillars configurations.
Technical Paper

Identification of Factors Influencing Premixed Diesel Engine Noise and Mechanism of Noise Reduction by EGR and Supercharging

2013-04-08
2013-01-0313
To determine the engine noise reduction methods, an engine noise research was conducted experimentally with a PCCI diesel engine. The engine employed in the experiments was a supercharged, single-cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave form and the cross power spectrum of the sound pressure of the engine noise. It is well known that the maximum pressure rise rate is the main parameter related to the engine noise. The PCCI engine was operated at a 1.0 MPa/°CA maximum pressure rise rate to eliminate the effects of the maximum pressure rise rate, and parameters which had the dominant effect on engine noise and combustion noise were determined.
Technical Paper

Effects of EGR and Pilot Injection on Characteristics of Combustion and Emissions of Diesel Engines with Low Ignitability Fuel

2012-04-16
2012-01-0853
Characteristics of diesel combustion with low cetane number fuels with similar distillation temperatures to ordinary diesel fuel, including fuels with cetane number 32 and 39 (LC32, LC39), and a blend of n-cetane (n-hexadecane) and iso-cetane (2, 2, 4, 4, 6, 8, 8-heptamethylnonane) with cetane number 32 (CN32), were investigated. The effects of cooled exhaust gas recirculation (EGR) and pilot injection on characteristics of combustion and exhaust gas emissions with these fuels were examined in a naturally aspirated, single cylinder, diesel engine equipped with a common-rail fuel injection system. Even with the low cetane number fuels, quiet combustion with low levels of exhaust gas emissions comparable to ordinary diesel fuel was established by suitable control of intake oxygen levels and pilot injections.
Technical Paper

Characteristics of Unburned Hydrocarbon Emissions in a Low Compression Ratio DI Diesel Engine

2009-04-20
2009-01-1526
In a DI diesel engine, THC emissions increase significantly with lower compression ratios, a low coolant temperature, or during the transient state. During the transient after a load increase, THC emissions are increased significantly to very high concentrations from just after the start of the load increase until around the 10th cycle, then rapidly decreased until the 20th cycle, before gradually decreasing to a steady state value after 1000 cycles. In the fully-warmed steady state operation with a compression ratio of 16 and diesel fuel, THC is reasonably low, but THC increases with lower coolant temperatures or during the transient period just after increasing the load. This THC increase is due to the formation of over-lean mixture with the longer ignition delay and also due to the fuel adhering to the combustion chamber walls. A low distillation temperature fuel such as normal heptane can eliminate the THC increase.
Technical Paper

Characteristics of Smokeless Low Temperature Diesel Combustion in Various Fuel-Air Mixing and Expansion of Operating Load Range

2009-04-20
2009-01-1449
The characteristics of smokeless low temperature diesel combustion in various fuel-air mixing was investigated by engine tests with high rates of cooled exhaust gas recirculation (EGR), three compression ratios, and fuels of various cetane numbers, as well as by computational fluid dynamics (CFD) simulation of the in-cylinder distributions of mixture concentration and temperature. The results show that besides combustion temperature, fuel-air mixing is also vital to efficient, smokeless, and low NOx diesel combustion. Smokeless and low NOx diesel combustion can be realized even with insufficient fuel-air mixing as long as the combustion temperature is sufficiently low. However low combustion temperature and insufficient oxygen due to ultra-high EGR cause very high UHC and CO emissions, and a severe deterioration in combustion efficiency.
Journal Article

Flow Structures above the Trunk Deck of Sedan-Type Vehicles and Their Influence on High-Speed Vehicle Stability 2nd Report: Numerical Investigation on Simplified Vehicle Models using Large-Eddy Simulation

2009-04-20
2009-01-0006
In the present study, two kinds of simplified vehicle models, which can reproduce flow structures around the two sedan-type vehicles in the previous study, are constructed for the object and the unsteady flow structures are extracted using Large-Eddy Simulation technique. The numerical results are validated in a stationary condition by comparing the results with a wind-tunnel experiment and details of steady and unsteady flow characteristics around the models, especially above the trunk deck, are investigated. In quasi- and non- stationary manner with regard to vehicle pitch motion, unsteady flow characteristics are also investigated and their relations to an aerodynamic stability are discussed.
Journal Article

Development of an Unsteady Aerodynamic Simulator Using Large-Eddy Simulation Based on High-Performance Computing Technique

2009-04-20
2009-01-0007
A numerical method specially designed to predict unsteady aerodynamics of road vehicle was developed based on unstructured Large-Eddy Simulation (LES) technique. The code was intensively optimized for the Earth Simulator in Japan to deal with the excessive computational resources required for LES, and could treat numerical meshes of up to around 120 million elements. Moving boundary methods such as the Arbitrary Lagrangian-Eulerian (ALE) or the sliding method were implemented to handle dynamic motion of a vehicle body during aerodynamic assessment. The method can also model a gusty crosswind condition. The method was applied to three cases in which unsteady aerodynamics are expected to be crucial.
Journal Article

Effect of Exhaust Catalysts on Regulated and Unregulated Emissions from Low Temperature Diesel Combustion with High Rates of Cooled EGR

2008-04-14
2008-01-0647
Unregulated emissions from a DI diesel engine with ultra-high EGR low temperature combustion were analyzed using Fourier transform infrared (FTIR) spectroscopy and the reduction characteristics of both regulated and unregulated emissions by two exhaust catalysts were investigated. With ultra-high EGR suppressing the in-cylinder soot and Nox formation as well as with the exhaust catalysts removing the engine-out THC and CO emissions, clean diesel operation in terms of ultra-low regulated emissions (Nox, PM, THC, and CO) is established in an operating range up to 50% load. To realize smokeless low temperature combustion at higher loads, EGR has to be increased to a rate with the overall (average) excess air ratio less than the stoichiometric ratio.
Technical Paper

Improvements in Low Temperature Diesel Combustion with Blending ETBE to Diesel Fuel

2007-07-23
2007-01-1866
The effects of blending ETBE to diesel fuel on the characteristics of low temperature diesel combustion and exhaust emissions were investigated in a naturally-aspirated DI diesel engine with large rates of cooled EGR. Low temperature smokeless diesel combustion in a wide EGR range was established with ETBE blended diesel fuel as mixture homogeneity is promoted with increased premixed duration due to decreases in ignitability as well as with improvement in fuel vaporization due to the lower boiling point of ETBE. Increasing the ETBE content in the fuel helps to suppress smoke emissions and maintain efficient smokeless operation when increasing EGR, however a too high ETBE content causes misfiring at larger rates of EGR. While the NOx emissions increase with increases in ETBE content at high intake oxygen concentrations, NOx almost completely disappears when reducing the intake oxygen content below 14 % with cooled EGR.
Technical Paper

Large Eddy Simulation of Unsteady Flow Around a Formula Car on Earth Simulator

2007-04-16
2007-01-0106
One of the world's largest unsteady turbulence simulations of flow around a formula car was conducted using Large Eddy Simulation (LES) on the Earth Simulator in Japan. The main objective of our study is to investigate the validity of LES for the assessment of vehicle aerodynamics, as an alternative to a conventional wind tunnel measurement or the Reynolds Averaged Navier-Stokes (RANS) simulation. The aerodynamic forces estimated by LES show good agreement with the wind tunnel data (within several percent!) and various unsteady flow features around the car is visualized, which clearly indicate the effectiveness of large-scale LES in the very near future for the computation of flow around vehicles with complex configurations.
Technical Paper

Characterization of Low Temperature Diesel Combustion with Various Dilution Gases

2007-04-16
2007-01-0126
The effects of intake dilution with various dilution gases including nitrogen, argon, and carbon dioxide on low temperature diesel combustion were investigated in a naturally aspirated DI diesel engine to understand the mechanism of the simultaneous reductions in smoke and NOx with ultra-high EGR. NOx almost completely disappears with the intake oxygen concentration diluted below 16% regardless of the kind of dilution gas. Smoke emissions decrease with increased heat capacity of the charged gas due to promotion of mixture homogeneity with longer ignition delays. Intake dilution with the 36% CO2 + 64% Ar mixture which has a similar specific heat capacity as N2 shows lower smoke emissions than with N2. Chemical kinetics analysis shows that carbon dioxide may help to reduce NOx and soot by lowering the reaction temperature as well as by changing the concentrations of some radicals or/and species related to soot and NOx formation.
Technical Paper

Large Eddy Simulation on the Underbody Flow of the Vehicle with Semi-Complex Underbody Configuration

2007-04-16
2007-01-0103
To effectively process CFD works in early stage of aerodynamic developments of vehicles, simple but semi-complex configurations of the vehicle underbody should be pursued. Large eddy simulation (LES) was performed on the flow around the vehicle with a semi-complex underbody configuration designed at Volvo Car. Computations with CFD code “FrontFlow-red” were performed for both flat and semi-complex underbody configurations. Unstructured meshes of approximately 22 and 23 millions were used respectively. Differences in the flow fields with flat and semi-complex underbody configurations and rotational effects of the wheels are discussed. LES results are also compared with those with Reynolds averaged Navier-Stokes (RANS) computations.
Technical Paper

Mechanisms in Reducing Smoke and NOx from BDF Combustion by Ethanol Blending and EGR

2007-04-16
2007-01-0622
Palm oil has the important advantage of productivity compared to other vegetable oils such as rapeseed oil and soybean oil. However, the cold flow performance of palm oil methyl ester (PME) is poorer than other vegetable oil based biodiesel fuels. Previous research by the authors has shown that ethanol blending into PME improves the cold flow performance and considerably reduces smoke emission. The reduced smoke may be expected to allow an expansion in the EGR limit and lead to reduced NOx. This paper experimentally analyses the influence of EGR on smoke and NOx emissions from the diesel combustion with PME/ethanol blended fuel. The mechanisms in the smoke reduction are also analyzed.
Technical Paper

Dependence of Ultra-High EGR and Low Temperature Diesel Combustion on Fuel Injection Conditions and Compression Ratio

2006-10-16
2006-01-3386
This research investigates the influences of the injection timing, injection pressure, and compression ratio on the combustion and exhaust emissions in a single cylinder 1.0 L DI diesel engine operating with ultra-high EGR. Longer ignition delays due to either advancing or retarding the injection timing reduced the smoke emissions, but advancing the injection timing has the advantages of maintaining the thermal efficiency and preventing misfiring. Smokeless combustion is realized with an intake oxygen content of only 9-10% regardless of the injection pressure. Reduction in the compression ratio is effective to reduce the in-cylinder temperature and increase the ignition delay as well as to expand the smokeless combustion range in terms of EGR and IMEP. However, the thermal efficiency deteriorates with excessively low compression ratios.
Technical Paper

Dependence of Ultra-High EGR Low Temperature Diesel Combustion on Fuel Properties

2006-10-16
2006-01-3387
The dependence of ultra-high EGR low temperature diesel combustion on fuel properties including cetane number and distillation temperature was investigated with a single-cylinder, naturally aspirated, 1.0 L, common rail DI diesel engine. Decreasing cetane number in fuels significantly reduces smoke emission due to an extension in ignition delay and the subsequent improvement in mixture formation. Smokeless combustion, ultra-low NOx, and efficient operating range with regard to EGR and IMEP are significantly extended by decreasing fuel cetane number. Changes in fuel distillation temperature do not result in significant differences in smoke emission and thermal efficiency for ultra-high EGR operation, and smokeless operation is established even with higher distillation temperature fuels as long as fuel cetane number is sufficiently low.
X