Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Capillary Electrophoresis for Spacecraft Drinking Water Analysis: Methods and Breadboard Development

1997-07-01
972464
This report describes the first two parts of a three-phase project to develop and test a spacecraft-compatible capillary electrophoresis (CE) instrument. This instrument is designed to monitor the quality of recycled potable water aboard spacecraft such as the International Space Station. Phase I involved selecting and validating methods for low mass-to-charge ratio (m/z) cations and anions by using a slightly modified commercial CE instrument as a model. The analytical performance of several published CE methods was assessed for their ability to detect targeted anions and cations listed in a NASA water quality standard. Direct and indirect UV absorption detection at a single wavelength (214 nm) was used, and separation selectivity and sensitivity were optimized at the expense of analysis time. Phase II focused on building a breadboard CE instrument and flight-testing it on NASA's KC-135 parabolic aircraft.
Technical Paper

Potable Water Treatment and Transfer from Shuttle to Mir

1997-07-01
972461
To satisfy a requirement to supply water to Mir station, a process for treating iodinated water on the Shuttle was developed and implemented. The treatment system consists of packed columns for removing iodine and a syringe-based injection system for adding ionic silver, the biocide used in Mir water. Technical and potable grade water is produced and transferred in batches using collapsible 44-liter contingency water containers (CWCs). Silver is added to the water via injection of a solution from preloaded syringes. Minerals are also added to water destined for drinking. During the previous four Shuttle-Mir docking missions a total of 2781 liters (735 gallons) of water produced by the Shuttle fuel cells was processed using this method and transferred to Mir. To verify the quality of the processed water, samples were collected during flight and returned for chemical analysis.
Technical Paper

Microbial Colonization of Closed Life Support Chambers

1997-07-01
972414
The first two phases of the Lunar-Mars Life Support Test Project [LMLSTP] involved housing human volunteers in closed chambers that mimic future extraterrestrial life support systems. The Phase I test involved one person living for 15 days in a chamber with wheat as the primary means of air revitalization. The Phase II test involved 4 people living for 30 days in a chamber with physical/chemical air revitalization and waste water recycling. The consequences of closure on microbial ecology and the influence that microbes had on these closed environmental life support systems were determined during both tests. The air, water, and surfaces of each chamber were sampled for microbial content before, during, and after each test. The numbers of microbes on the Phase I habitation chamber surfaces increased with length of occupation.
Technical Paper

Water Analysis Results from Phase II of the NASA Early Human Testing Initiative 30-Day Closed Chamber Test

1997-07-01
972555
An important milestone in the ongoing effort by NASA to develop and refine closed-loop water recycling systems for human space flight was reached during the summer of 1996 with the successful completion of Phase II of the Lunar Mars Life Support Testing Program at Johnson Space Center. Part of Phase II involved testing a water-recycling system in a closed test chamber continuously occupied by four human subjects for thirty days. The Phase II crew began the test with a supply of water that had been processed and certified for human use. As the test progressed, humidity condensate, urine, and wastewater from personal hygiene and housekeeping activities were reclaimed and reused several times. Samples were collected from various points in the reclamation process during the thirty day test. The data verified the water-processing hardware can reliably remove wastewater contaminants and produce reclaimed water that meets NASA standards for hygiene- and potable-quality water.
Technical Paper

Microbiology Standards for the International Space Station

1995-07-01
951682
The Crew Health System (CHeCS) plays a pivotal role in monitoring the life-support activities that maintain space station environmental quality and crew safety. Sampling hardware will be used in specific protocols to monitor the microbial dynamics of the closed spacecraft environment. NASA flight experience, ground-based studies, consultations with clinical and environmental microbiologists, and panel discussions with experts in engineering, flight-crew operations, microbiology, toxicology, and water quality systems all have been integral to the revision of in-flight microbial standards. The new standards for air and internal surfaces differentiate between bacterial and fungal loads, unlike previous standards that relied on total microbial counts. Microorganisms that must not be present in air or water or on surfaces also are listed.
Technical Paper

First Entry Operations for Spacecraft

1992-07-01
921384
Space Station Freedom (SSF) modules may be unattended for months during the Man-Tended Capability (MTC) phase of the program. The accumulation of airborne contamination from materials offgassing or contingency incidents (e.g., thermodegradation) raise concerns about crew health and safety from the first crew entry throughout the MTC phase. Computer modelling of the MTC phase, and experiences from previous space flight missions confirm that caution must be exercised during nominal first entry operations. This paper will describe first entry procedures used in the industrial setting and examples of the consequences when first-entry procedures were not followed. Experiences during the Skylab program will be presented to highlight the necessity for carefully planned operations. Anecdotal experiences from previous Spacelab missions and the results of first entry samples from the International Microgravity Laboratory (IML-1) will be detailed.
Technical Paper

Space Station Freedom Viewed as a “Tight Building”

1990-07-01
901382
The Space Station Freedom (SSF), with a 30-year projected lifetime and a completely closed-loop Environmental Control and Life Support System (ECLSS), is perhaps the ultimate “Tight Building.” Recognizing the potential for the development of “Tight Building Syndrome” (TBS), and initiating actions to minimize possible TBS occurrences on SSF, requires a multidisciplinary approach that begins with appropriate design concerns and ends with detection and control measures on board SSF. This paper will present a brief summary of current experience with TBS on Earth. While many of the circumstances and methodologies garnered from investigating tight buildings on Earth are similar to those that might be encountered aboard SSF, the Station also presents a unique environment and a special set of constraints which will require an adaptation of previous protocols. Air contamination, including volatile organic compounds and microorganisms, will be the focus of the discussion.
X