Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Investigation of Airflow Induced Whistle Noise by HVAC Control Doors Utilizing a ‘V-Shape’ Rubber Seal

2011-05-17
2011-01-1615
Doors inside an automotive HVAC module are essential components to ensure occupant comfort by controlling the cabin temperature and directing the air flow. For temperature control, the function of a door is not only to close/block the airflow path via the door seal that presses against HVAC wall, but also control the amount of hot and cold airflow to maintain cabin temperature. To meet the stringent OEM sealing requirement while maintaining a cost-effective product, a “V-Shape” soft rubber seal is commonly used. However, in certain conditions when the door is in the position other than closed which creates a small gap, this “V-Shape” seal is susceptible to the generation of objectionable whistle noise for the vehicle passengers. This nuisance can easily reduce end-customer satisfaction to the overall HVAC performance.
Technical Paper

Design and Development of a Cylindrical HVAC Case

2004-03-08
2004-01-1385
There are many opportunities in a current automotive HVAC case for improved performance, and cost savings. Based on these opportunities, a new HVAC case design has been developed. This new design is smaller and lighter than current cases while meeting many of the performance requirements. The case also features a unique plenum design for air distribution to the three modes, panel, floor, and defrost. The results of simulation and laboratory testing confirmed the concept of the new HVAC design.
Technical Paper

The Effects of Retained Fluid and Humidity on the Evacuation of Critical Vehicle Systems

1999-05-10
1999-01-1630
In automotive assembly facilities worldwide, many critical vehicle systems such as brakes, power steering, radiator, and air conditioning require the appropriate fluid to function. In order to insure that these critical vehicle systems receive the correct amount of properly treated fluid, automotive manufacturers employ a method called Evacuation and Fill. Due to their closed-loop design, many critical vehicle systems must be first exposed to vacuum prior to being flooded with fluid. Only after the evacuation and fill process is complete will the critical vehicle system be able to perform as specified. It has long been thought, but never proven, that humidity and entrenched fluid were major hindrances to the Evacuation and Fill process. Consequently, Ford Motor Company Advanced Manufacturing Technology Development, Sandalwood Enterprises, Kettering University, and Dominion Tool & Die conducted a detailed project on this subject.
X