Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Pedestrian Impact Analysis of Side-Swipe and Minor Overlap Conditions

2021-04-06
2021-01-0881
This paper presents analyses of 21real-world pedestrian versus vehicle collisions that were video recorded from vehicle dash mounted cameras or surveillance cameras. These pedestrian collisions have in common an impact configuration where the pedestrian was at the side of the vehicle, or with a minimal overlap at the front corner of the vehicle (less than one foot overlap). These impacts would not be considered frontal impacts [1], and as a result determining the speed of the vehicle by existing methods that incorporate the pedestrian travel distance post impact, or by assessing vehicle damage, would not be applicable. This research examined the specific interaction of non-frontal, side-impact, and minimal overlap pedestrian impact configurations to assess the relationship between the speed of the vehicle at impact, the motion of the pedestrian before and after impact, and the associated post impact travel distances.
Journal Article

Acceleration of Left Turning Heavy Trucks

2020-04-14
2020-01-0882
Accidents involving heavy trucks turning left across travel lanes of a roadway are common subjects of investigation in the field of accident reconstruction. The distance traversed during a turn and lateral and tangential accelerations of the left turning heavy truck can be used to model its motion and determine timing as it relates to a collision. As a follow up to the 2019 SAE Accident Reconstruction section paper by the authors (2019-01-0411), this paper will investigate the longitudinal and lateral accelerations of heavy trucks during small, medium, and large radius turns and analyze peak and average lateral accelerations as they relate to turn radius and vehicle speeds. This study analyzed 70 tractor-trailers, 19 straight trucks and 15 bobtail tractors for a total of 104 heavy trucks.
Technical Paper

Two Phase Heavy Truck Acceleration Model

2019-04-02
2019-01-0411
There have been several papers published over the past 25 years regarding the acceleration of heavy trucks, including different loading conditions, drivetrain configurations, and driving techniques. The papers provide a large data set that measures the speed, distance, and time of the vehicles during acceleration testing and present the data in tabular or graphical formats. Although the data as presented can be useful, it can be challenging to pore over all the data to determine the correct set for a specific application in accident reconstruction. As of this paper’s date of publication, there are approximately eight relevant papers with a total of 268 acceleration tests performed, spanning many years. This paper reviews all the available published literature and summarizes the relevant data in a comprehensive list of accelerations for different heavy truck configurations, which provides a valuable resource to the accident reconstruction field.
Technical Paper

Low Speed Override of Passenger Vehicles with Heavy Trucks

2019-04-02
2019-01-0430
In low speed collisions (under 15 mph) that involve a heavy truck impacting the rear of a passenger vehicle, it is likely that the front bumper of the heavy truck will override the rear bumper beam of the passenger vehicle, creating an override/underride impact configuration. There is limited data available for study when attempting to quantify vehicle damage and crash dynamics in low-speed override/underride impacts. Low speed impact tests were conducted to provide new data for passenger vehicle dynamics and damage assessment for low speed override/underride rear impacts to passenger vehicles. Three tests were conducted, with a tractor-trailer impacting three different passenger vehicles at 5 mph and 10 mph. This paper presents data from these three tests in order to expand the available data set for low speed override/underride collisions.
Technical Paper

Mid-Range Data Acquisition Units UsingGPS and Accelerometers

2018-04-03
2018-01-0513
In the 2016 SAE publication “Data Acquisition using Smart Phone Applications,” Neale et al., evaluated the accuracy of basic fitness applications in tracking position and elevation using the GPS and accelerometer technology contained within the smart phone itself [1]. This paper further develops the research by evaluating mid-level applications. Mid-level applications are defined as ones that use a phone’s internal accelerometer and record data at 1 Hz or greater. The application can also utilize add-on devices, such as a Bluetooth enabled GPS antenna, which reports at a higher sample rate (10 Hz) than the phone by itself. These mid-level applications are still relatively easy to use, lightweight and affordable [2], [3], [4], but have the potential for higher data sample rates for the accelerometer (due to the software) and GPS signal (due to the hardware). In this paper, Harry’s Lap Timer™ was evaluated as a smart phone mid-level application.
Technical Paper

Data Acquisition using Smart Phone Applications

2016-04-05
2016-01-1461
There are numerous publically available smart phone applications designed to track the speed and position of the user. By accessing the phones built in GPS receivers, these applications record the position over time of the phone and report the record on the phone itself, and typically on the application’s website. These applications range in cost from free to a few dollars, with some, that advertise greater functionality, costing significantly higher. This paper examines the reliability of the data reported through these applications, and the potential for these applications to be useful in certain conditions where monitoring and recording vehicle or pedestrian movement is needed. To analyze the reliability of the applications, three of the more popular and widely used tracking programs were downloaded to three different smart phones to represent a good spectrum of operating platforms.
X