Refine Your Search

Topic

Search Results

Technical Paper

Braking and Swerving Capabilities of Three-Wheeled Motorcycles

2019-04-02
2019-01-0413
This paper reports testing and analysis of the braking and swerving capabilities of on-road, three-wheeled motorcycles. A three-wheeled vehicle has handling and stability characteristics that differ both from two-wheeled motorcycles and from four-wheeled vehicles. The data reported in this paper will enable accident reconstructionists to consider these different characteristics when analyzing a three-wheeled motorcycle operator’s ability to brake or swerve to avoid a crash. The testing in this study utilized two riders operating two Harley-Davidson Tri-Glide motorcycles with two wheels in the rear and one in the front. Testing was also conducted with ballast to explore the influence of passenger or cargo weight. Numerous studies have documented the braking capabilities of two-wheeled motorcycles with riders of varying skill levels and with a range of braking systems.
Technical Paper

Lateral and Tangential Accelerations of Left Turning Vehicles from Naturalistic Observations

2019-04-02
2019-01-0421
When reconstructing collisions involving left turning vehicles at intersections, accident reconstructionists are often required to determine the relative timing and spacing between two vehicles involved in such a collision. This time-space analysis frequently involves determining or prescribing a path and acceleration profile for the left turning vehicle. Although numerous studies have examined the straight-line acceleration of vehicles, only two studies have presented the tangential and lateral acceleration of left turning vehicles. This paper expands on the results of those limited studies and presents a methodology to automatically detect and track vehicles in a video file. The authors made observations of left turning vehicles at three intersections. Each intersection incorporated permissive green turn phases for left turning vehicles.
Technical Paper

Speed Analysis of Yawing Passenger Vehicles Following a Tire Tread Detachment

2019-04-02
2019-01-0418
This paper presents yaw testing of vehicles with tread removed from tires at various locations. A 2004 Chevrolet Malibu and a 2003 Ford Expedition were included in the test series. The vehicles were accelerated up to speed and a large steering input was made to induce yaw. Speed at the beginning of the tire mark evidence varied between 33 mph and 73 mph. Both vehicles were instrumented to record over the ground speed, steering angle, yaw angle and in some tests, wheel speeds. The tire marks on the roadway were surveyed and photographed. The Critical Speed Formula has long been used by accident reconstructionists for estimating a vehicle’s speed at the beginning of yaw tire marks. The method has been validated by previous researchers to calculate the speed of a vehicle with four intact tires. This research extends the Critical Speed Formula to include yawing vehicles following a tread detachment event.
Technical Paper

Reconstruction of 3D Accident Sites Using USGS LiDAR, Aerial Images, and Photogrammetry

2019-04-02
2019-01-0423
The accident reconstruction community has previously relied upon photographs and site visits to recreate a scene. This method is difficult in instances where the site has changed or is not accessible. In 2017 the United States Geological Survey (USGS) released historical 3D point clouds (LiDAR) allowing for access to digital 3D data without visiting the site. This offers many unique benefits to the reconstruction community including: safety, budget, time, and historical preservation. This paper presents a methodology for collecting this data and using it in conjunction with aerial imagery, and camera matching photogrammetry to create 3D computer models of the scene without a site visit.
Technical Paper

An Optimization of Small Unmanned Aerial System (sUAS) Image Based Scanning Techniques for Mapping Accident Sites

2019-04-02
2019-01-0427
Small unmanned aerial systems have gained prominence in their use as tools for mapping the 3-dimensional characteristics of accident sites. Typically, the process of mapping an accident site involves taking a series of overlapping, high resolution photographs of the site, and using photogrammetric software to create a point cloud or mesh of the site. This process, known as image-based scanning, is explored and analyzed in this paper. A mock accident site was created that included a stopped vehicle, a bicycle, and a ladder. These objects represent items commonly found at accident sites. The accident site was then documented with several different unmanned aerial vehicles at differing altitudes, with differing flight patterns, and with different flight control software. The photographs taken with the unmanned aerial vehicles were then processed with photogrammetry software using different methods to scale and align the point clouds.
Technical Paper

Two Phase Heavy Truck Acceleration Model

2019-04-02
2019-01-0411
There have been several papers published over the past 25 years regarding the acceleration of heavy trucks, including different loading conditions, drivetrain configurations, and driving techniques. The papers provide a large data set that measures the speed, distance, and time of the vehicles during acceleration testing and present the data in tabular or graphical formats. Although the data as presented can be useful, it can be challenging to pore over all the data to determine the correct set for a specific application in accident reconstruction. As of this paper’s date of publication, there are approximately eight relevant papers with a total of 268 acceleration tests performed, spanning many years. This paper reviews all the available published literature and summarizes the relevant data in a comprehensive list of accelerations for different heavy truck configurations, which provides a valuable resource to the accident reconstruction field.
Technical Paper

Low Speed Override of Passenger Vehicles with Heavy Trucks

2019-04-02
2019-01-0430
In low speed collisions (under 15 mph) that involve a heavy truck impacting the rear of a passenger vehicle, it is likely that the front bumper of the heavy truck will override the rear bumper beam of the passenger vehicle, creating an override/underride impact configuration. There is limited data available for study when attempting to quantify vehicle damage and crash dynamics in low-speed override/underride impacts. Low speed impact tests were conducted to provide new data for passenger vehicle dynamics and damage assessment for low speed override/underride rear impacts to passenger vehicles. Three tests were conducted, with a tractor-trailer impacting three different passenger vehicles at 5 mph and 10 mph. This paper presents data from these three tests in order to expand the available data set for low speed override/underride collisions.
Book

Motorcycle Crash Reconstruction

2018-12-10
In a recent National Highway Traffic Safety Administration (NHTSA) report, about one out of every 7 fatalities on the road involved a motorcycle. Itis clear that motorcyclists are more vulnerable and much more likely to be injured or killed in a crash than are passengers in a car accident. Motorcycle Accident Reconstruction purposefully pulls together as much of the relevant accident reconstruction literature and science as possible to present definitive literature that meets the needs of the crash reconstruction industry. The reader will learn to analyze physical evidence, understand what it means, and how to incorporate math and physics into an investigation. Topics featured in this book include: Case studies utilizing event data recorder data Photogrammetry analysis Determining motorcycle speed at the time of an accident The book provides a unique roadmap for the motorcycle accident reconstructionist user.
Book

Rollover Crash Reconstruction

2018-08-07
According to the National Highway Traffic Safety Administration, “of the nearly 9.1 million passenger car, SUV, pickup and van crashes in 2010, only 2.1% involved a rollover. However, rollovers accounted for nearly 35% of all deaths from passenger vehicle crashes. In 2010 alone, more than 7,600 people died in rollover crashes.” Rollover accidents continue to be a leading contributor of vehicle deaths. While this continues to be true, it is pertinent to understand the entire crash process. Each stage of the accident provides valuable insight into the application of reconstruction methodologies. Rollover Accident Reconstruction focuses on tripped, single vehicle rollover crashes that terminate without striking a fixed object.
Technical Paper

Motorcycle Headlamp Distribution Comparison

2018-04-03
2018-01-1037
The forward lighting systems on a motorcycle differ from the forward lighting systems on passenger cars, trucks, and tractor trailer. Many motorcycles, for instance, have only a single headlamp. For motorcycles that have more than one headlamp, the total width between the headlamps is still significantly less than the width of an automobile, an important component in the detection of a vehicle at night, as well as a factor in the efficacy of the beam pattern to help a driver see ahead. Single headlamp configurations are centered on the vehicle, and provide little assistance in marking the outside boundaries like a passenger car or truck headlamps can. Further, because of the dynamics of a motorcycle, the performance of the headlamp will differ around turns or corners, since the motorcycle must lean in order to negotiate a turn. As a result, the beam pattern, and hence visibility, provided by the headlamps on a motorcycle are unique for motorized vehicles.
Journal Article

Using Multiple Photographs and USGS LiDAR to Improve Photogrammetric Accuracy

2018-04-03
2018-01-0516
The accident reconstruction community relies on photogrammetry for taking measurements from photographs. Camera matching, a close-range photogrammetry method, is a particularly useful tool for locating accident scene evidence after time has passed and the evidence is no longer physically visible. In this method, objects within the accident scene that have remained unchanged are used as a reference for locating evidence that is no longer physically available at the scene such as tire marks, gouge marks, and vehicle points of rest. Roadway lines, edges of pavement, sidewalks, signs, posts, buildings, and other structures are recognizable scene features that if unchanged between the time of accident and time of analysis are beneficial to the photogrammetric process. In instances where these scene features are limited or do not exist, achieving accurate photogrammetric solutions can be challenging.
Journal Article

Further Validation of Equations for Motorcycle Lean on a Curve

2018-04-03
2018-01-0529
Previous studies have reported and validated equations for calculating the lean angle required for a motorcycle and rider to traverse a curved path at a particular speed. In 2015, Carter, Rose, and Pentecost reported physical testing with motorcycles traversing curved paths on an oval track on a pre-marked range in a relatively level parking lot. Several trends emerged in this study. First, while theoretical lean angle equations prescribe a single lean angle for a given lateral acceleration, there was considerable scatter in the real-world lean angles employed by motorcyclists for any given lateral acceleration level. Second, the actual lean angle was nearly always greater than the theoretical lean angle. This prior study was limited in that it only examined the motorcycle lean angle at the apex of the curves. The research reported here extends the previous study by examining the accuracy of the lean angle formulas throughout the curves.
Technical Paper

Mid-Range Data Acquisition Units UsingGPS and Accelerometers

2018-04-03
2018-01-0513
In the 2016 SAE publication “Data Acquisition using Smart Phone Applications,” Neale et al., evaluated the accuracy of basic fitness applications in tracking position and elevation using the GPS and accelerometer technology contained within the smart phone itself [1]. This paper further develops the research by evaluating mid-level applications. Mid-level applications are defined as ones that use a phone’s internal accelerometer and record data at 1 Hz or greater. The application can also utilize add-on devices, such as a Bluetooth enabled GPS antenna, which reports at a higher sample rate (10 Hz) than the phone by itself. These mid-level applications are still relatively easy to use, lightweight and affordable [2], [3], [4], but have the potential for higher data sample rates for the accelerometer (due to the software) and GPS signal (due to the hardware). In this paper, Harry’s Lap Timer™ was evaluated as a smart phone mid-level application.
Technical Paper

An Analytical Review and Extension of Two Decades of Research Related to PC-Crash Simulation Software

2018-04-03
2018-01-0523
PC-Crash is a vehicular accident simulation software that is widely used by the accident reconstruction community. The goal of this article is to review the prior literature that has addressed the capabilities of PC-Crash and its accuracy and reliability for various applications (planar collisions, rollovers, and human motion). In addition, this article aims to add additional analysis of the capabilities of PC-Crash for simulating planar collisions and rollovers. Simulation analysis of five planar collisions originally reported and analyzed by Bailey [2000] are reexamined. For all five of these collisions, simulations were obtained with the actual impact speeds that exhibited excellent visual agreement with the physical evidence. These simulations demonstrate that, for each case, the PC-Crash software had the ability to generate a simulation that matched the actual impact speeds and the known physical evidence.
Technical Paper

Comparing A Timed Exposure Methodology to the Nighttime Recognition Responses from SHRP-2 Naturalistic Drivers

2017-03-28
2017-01-1366
Collision statistics show that more than half of all pedestrian fatalities caused by vehicles occur at night. The recognition of objects at night is a crucial component in driver responses and in preventing nighttime pedestrian accidents. To investigate the root cause of this fact pattern, Richard Blackwell conducted a series of experiments in the 1950s through 1970s to evaluate whether restricted viewing time can be used as a surrogate for the imperfect information available to drivers at night. The authors build on these findings and incorporate the responses of drivers to objects in the road at night found in the SHRP-2 naturalistic database. A closed road outdoor study and an indoor study were conducted using an automatic shutter system to limit observation time to approximately ¼ of a second. Results from these limited exposure time studies showed a positive correlation to naturalistic responses, providing a validation of the time-limited exposure technique.
Technical Paper

An Evaluation of Two Methodologies for Lens Distortion Removal when EXIF Data is Unavailable

2017-03-28
2017-01-1422
Photogrammetry and the accuracy of a photogrammetric solution is reliant on the quality of photographs and the accuracy of pixel location within the photographs. A photograph with lens distortion can create inaccuracies within a photogrammetric solution. Due to the curved nature of a camera’s lens(s), the light coming through the lens and onto the image sensor can have varying degrees of distortion. There are commercially available software titles that rely on a library of known cameras, lenses, and configurations for removing lens distortion. However, to use these software titles the camera manufacturer, model, lens and focal length must be known. This paper presents two methodologies for removing lens distortion when camera and lens specific information is not available. The first methodology uses linear objects within the photograph to determine the amount of lens distortion present. This method will be referred to as the straight-line method.
Technical Paper

Video Analysis of Motorcycle and Rider Dynamics During High-Side Falls

2017-03-28
2017-01-1413
This paper investigates the dynamics of four motorcycle crashes that occurred on or near a curve (Edwards Corner) on a section of the Mulholland Highway called “The Snake.” This section of highway is located in the Santa Monica Mountains of California. All four accidents were captured on video and they each involved a high-side fall of the motorcycle and rider. This article reports a technical description and analysis of these videos in which the motion of the motorcycles and riders is quantified. To aid in the analysis, the authors mapped Edwards Corner using both a Sokkia total station and a Faro laser scanner. This mapping data enabled analysis of the videos to determine the initial speed of the motorcycles, to identify where in the curve particular rider actions occurred, to quantify the motion of the motorcycles and riders, and to characterize the roadway radius and superelevation throughout the curve.
Technical Paper

A Compendium of Passenger Vehicle Event Data Recorder Literature and Analysis of Validation Studies

2016-04-05
2016-01-1497
This paper presents a comprehensive literature review of original equipment event data recorders (EDR) installed in passenger vehicles, as well as a summary of results from the instrumented validation studies. The authors compiled 187 peer-reviewed studies, textbooks, legal opinions, governmental rulemaking policies, industry publications and presentations pertaining to event data recorders. Of the 187 total references, there were 64 that contained testing data. The authors conducted a validation analysis using data from 27 papers that presented both the EDR and corresponding independent instrumentation values for: Vehicle velocity change (ΔV) Pre-Crash vehicle speed The combined results from these studies highlight unique observations of EDR system testing and demonstrate the observed performance of original equipment event data recorders in passenger vehicles.
Journal Article

The Relationship Between Tire Mark Striations and Tire Forces

2016-04-05
2016-01-1479
Tire mark striations are discussed often in the literature pertaining to accident reconstruction. The discussions in the literature contain many consistencies, but also contain disagreements. In this article, the literature is first summarized, and then the differences in the mechanism in which striations are deposited and interpretation of this evidence are explored. In previous work, it was demonstrated that the specific characteristics of tire mark striations offer a glimpse into the steering and driving actions of the driver. An equation was developed that relates longitudinal tire slip (braking) to the angle of tire mark striations [1]. The longitudinal slip equation was derived from the classic equation for tire slip and also geometrically. In this study, the equation for longitudinal slip is re-derived from equations that model tire forces.
Technical Paper

A Survey of Multi-View Photogrammetry Software for Documenting Vehicle Crush

2016-04-05
2016-01-1475
Video and photo based photogrammetry software has many applications in the accident reconstruction community including documentation of vehicles and scene evidence. Photogrammetry software has developed in its ease of use, cost, and effectiveness in determining three dimensional data points from two dimensional photographs. Contemporary photogrammetry software packages offer an automated solution capable of generating dense point clouds with millions of 3D data points from multiple images. While alternative modern documentation methods exist, including LiDAR technologies such as 3D scanning, which provide the ability to collect millions of highly accurate points in just a few minutes, the appeal of automated photogrammetry software as a tool for collecting dimensional data is the minimal equipment, equipment costs and ease of use.
X