Refine Your Search

Topic

Search Results

Technical Paper

A Comparative Study of Knock Formation in Gasoline and Methanol Combustion Using a Multiple Spark Ignition Approach: An Optical Investigation

2024-04-09
2024-01-2105
Engine knock is a major challenge that limits the achievement of higher engine efficiency by increasing the compression ratio of the engine. To address this issue, using a higher octane number fuel can be a potential solution to reduce or eliminate the propensity for knock and so obtain better engine performance. Methanol, a promising alternative fuel, can be produced from conventional and non-conventional energy resources, which can help reduce pollutant emissions. Methanol has a higher octane number than typically gasolines, which makes it a viable option for reducing knock intensity. This study compared the combustion characteristics of gasoline and methanol fuels in an optical spark-ignition engine using multiple spark plugs. The experiment was carried out on a single-cylinder four-stroke optical engine. The researchers used a customized metal liner with four circumferential spark plugs to generate multiple flame kernels inside the combustion chamber.
Technical Paper

Fuel Stratification to Improve the Lean Limit in a Methane-Fueled Heavy-Duty Spark-Ignition Optical Engine

2023-08-28
2023-24-0045
Natural gas is an attractive fuel for heavy-duty internal combustion engines as it has the potential to reduce CO2, particulate, and NOx emissions. This study reports optical investigations on the effect of methane stratification at lean combustion conditions in a heavy-duty optical diesel engine converted to spark-ignition operation. The combination of the direct injector (DI) and port-fuel injectors (PFI) fueling allows different levels of in-cylinder fuel stratification. The engine was operated in skip-firing mode, and high-speed natural combustion luminosity color images were recorded using a high-speed color camera from the bottom view, along with in-cylinder pressure measurements. The results from methane combustion based on port-fuel injections indicate the lean burn limit at λ = 1.4. To improve the lean limit of methane combustion, fuel stratification is introduced into the mixture using direct injections.
Technical Paper

Sustainability of Future Shipping Fuels: Well-to-Wake Environmental and Techno-Economic Analysis of Ammonia and Methanol

2023-08-28
2023-24-0093
The transportation industry has been scrutinized for its contribution towards the global greenhouse gas emissions over the years. While the automotive sector has been regulated by strict emission legislation globally, the emissions from marine transportation have been largely neglected. However, during the past decade, the international maritime organization focused on ways to lower the emission intensity of the marine sector by introducing several legislations. This sets limits on the emissions of different oxides of carbon, nitrogen and sulphur, which are emitted in large amounts from heavy fuel oil (HFO) combustion (the primary fuel for the marine sector). A 40% and 70% reduction per transport work compared to the levels of 2008 is set as target for CO2 emission for 2030 and 2050, respectively. To meet these targets, commonly, methanol, as a low-carbon fuel, and ammonia, as a zero-carbon fuel, are considered.
Technical Paper

Effects of Engine Speed on Prechamber-Assisted Combustion

2023-08-28
2023-24-0020
Lean combustion technologies show promise for improving engine efficiency and reducing emissions. Among these technologies, prechamber-assisted combustion (PCC) is established as a reliable option for achieving lean or ultra-lean combustion. In this study, the effect of engine speed on PCC was investigated in a naturally aspirated heavy-duty optical engine: a comparison has been made between analytical performances and optical flame behavior. Bottom view natural flame luminosity (NFL) imaging was used to observe the combustion process. The prechamber was fueled with methane, while the main chamber was fueled with methanol. The engine speed was varied at 1000, 1100, and 1200 revolutions per minute (rpm). The combustion in the prechamber is not affected by changes in engine speed. However, the heat release rate (HRR) in the main chamber changed from two distinct stages with a faster first stage to more gradual and merged stages as the engine speed increased.
Technical Paper

Experimental Investigations of Methane-Hydrogen Blended Combustion in a Heavy-Duty Optical Diesel Engine Converted to Spark Ignition Operation

2023-04-11
2023-01-0289
The global need for de-carbonization and stringent emission regulations are pushing the current engine research toward alternative fuels. Previous studies have shown that the uHC, CO, and CO2 emissions are greatly reduced and brake thermal efficiency increases with an increase in hydrogen concentration in methane-hydrogen blends for the richer mixture compositions. However, the combustion suffers from high NOx emissions. While these trends are well established, there is limited information on a detailed optical study on the effect of air-excess ratio for different methane-hydrogen mixtures. In the present study, experimental investigations of different methane-hydrogen blends between 0 and 100% hydrogen concentration by volume for the air-excess ratio of 1, 1.4, 1.8, and 2.2 were conducted in a heavy-duty optical diesel engine converted to spark-ignition operation. The engine was equipped with a flat-shaped optical piston to allow bottom-view imaging of the combustion chamber.
Technical Paper

Comparing Unburned Fuel Emission from a Pre-chamber Engine Operating on Alcohol Fuels using FID and FTIR Analyzers

2022-08-30
2022-01-1094
Typical automotive emission testing systems usually employ Flame Ionization Detection (FID) analyzers to measure unburned fuel species in the exhaust, but the technique is not suitable for engines operating on alcohol fuels. The FID method is not sensitive to measuring unburned alcohol fuels due to the presence of oxygen bonds in the fuel molecule. Other techniques, such as Fourier Transform Infrared (FTIR), can provide accurate unburned fuel measurements with alcohol fuel. However, these techniques are expensive and are less accessible compared to FID analyzers. In this study, the unburned fuel emissions from the engine exhaust were measured simultaneously with FID and FTIR analyzers, with the engine operating on pure alcohols, which are methanol, ethanol, and n-butanol. While most previous work focuses on stoichiometric air-fuel mixtures, a wide range of lean operating conditions between global-λ 1.6 to 2.8 will be tested in this study.
Journal Article

Jet Characteristics of a Narrow Throat Pre-Chamber and Influence on the Main-Chamber Combustion

2022-08-30
2022-01-1006
Lean combustion is one of the most applied methods to increase engine efficiency and maintain a good trade-off with engine emissions. The pre-chamber combustion (PCC) is one of the most promising combustion concepts to extend the lean operating limits of the engine. The Narrow throat pre-chamber has shown better lean limit extension compared to other ignition sources. The pre-chamber jets and the main-chamber combustion were studied in a Heavy-Duty optical engine using methane fuel. The tested conditions covered global excess air ratios (λ), between 1.9 to 2.3. The combustion process was recorded using three collection systems: (a) Natural Flame Luminosity (NFL) with a temporal resolution of 0.1 CAD; (b) OH* Chemiluminescence, and (c) CH* Chemiluminescence with a temporal resolution of 0.2 CAD for both. The propagating velocity of the reacting jets was studied using Combustion Image Velocimetry (CIV) based on bottom view images of the main chamber.
Technical Paper

A Numerical Study on the Effect of a Pre-Chamber Initiated Turbulent Jet on Main Chamber Combustion

2022-03-29
2022-01-0469
To elucidate the complex characteristics of pre-chamber combustion engines, the interaction of the hot gas jets initiated by an active narrow throated pre-chamber with lean premixed CH4/air in a heavy-duty engine was studied computationally. A twelve-hole KAUST proprietary pre-chamber geometry was investigated using CONVERGE software. The KAUST pre-chamber has an upper conical part with the spark plug, and fuel injector, followed by a straight narrow region called the throat and nozzles connecting the chambers. The simulations were run for an entire cycle, starting at the previous cycle's exhaust valve opening (EVO). The SAGE combustion model was used with the chemistry modeled using a reduced methane oxidation mechanism based on GRI Mech 3.0, which was validated against in-house OH chemiluminescence data from the optical engine experiments.
Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Journal Article

Analysis of Fuel Properties on Combustion Characteristics in a Narrow-Throat Pre-Chamber Engine

2021-04-06
2021-01-0474
In this study, the authors investigated the effect of fuel properties on the combustion characteristics by employing methane, methanol, ethanol, and primary reference fuels (PRFs) as the main chamber fuel while using methane for the pre-chamber. Global excess air ratios (λ) from 1.6 to lean limit were tested, while 13% of total fuel energy supplied to the engine was delivered via the pre-chamber. The gaseous methane was injected into the pre-chamber at the gas exchange top-dead-center (TDC). Port fuel injection was tested with both open and closed inlet valves. The pre-chamber assembly was designed to fit into the diesel injector pocket of the base engine, which resulted in a narrow throat diameter of 3.3 mm. The combustion stability limit was set at 5% of the coefficient of variation of gross IMEP, and the knock intensity limit was set at 10 bar. GT-Power software was used to estimate the composition of pre-chamber species and was used in heat release analysis of the two chambers.
Technical Paper

Simultaneous Negative PLIF and OH* Chemiluminescence Imaging of the Gas Exchange and Flame Jet from a Narrow Throat Pre-Chamber

2020-09-15
2020-01-2080
Pre-chamber combustion (PCC) is a promising engine combustion concept capable of extending the lean limit at part load. The engine experiments in the literature showed that the PCC could achieve higher engine thermal efficiency and much lower NOx emission than the spark-ignition engine. Improved understanding of the detailed flow and combustion physics of PCC is important for optimizing the PCC combustion. In this study, we investigated the gas exchange and flame jet from a narrow throat pre-chamber (PC) by only fueling the PC with methane in an optical engine. Simultaneous negative acetone planar laser-induced fluorescence (PLIF) imaging and OH* chemiluminescence imaging were applied to visualize the PC jet and flame jet from the PC, respectively. Results indicate a delay of the PC gas exchange relative to the built-up of the pressure difference (△ P) between PC and the main chamber (MC). This should be due to the gas inertia inside the PC and the resistance of the PC nozzle.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Technical Paper

Narrow-Throat Pre-Chamber Combustion with Ethanol, a Comparison with Methane

2020-09-15
2020-01-2041
With increasingly stringent emissions regulations, the use of pre-chamber combustion systems is gaining popularity in Internal Combustion Engines (ICE). The advantages of pre-chambers are well established, such as improving fuel economy by increasing the lean limit and reducing emissions, particularly NOX. In pre-chamber combustion, flame jets shoot out from the pre-chamber orifices into the main chamber, generating several ignition points that promote a rapid burn rate of the lean mixture (excess-air ratio (λ) >1) in the main chamber. This work studies the effects of using two different fuels in the main chamber and assesses the lean limit, the combustion efficiency (ηc), and the emissions of a single-cylinder heavy-duty engine equipped with a narrow-throat active pre-chamber. Ethanol (C2H5OH) was tested in the main chamber while keeping the pre-chamber fueled with methane (CH4), and the results were then compared to using methane as the sole fuel.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Technical Paper

Knock and Pre-Ignition Limits on Utilization of Ethanol in Octane-on-Demand Concept

2019-09-09
2019-24-0108
Octane-on-Demand (OoD) is a promising technology for reducing greenhouse emissions from automobiles. The concept utilizes a low-octane fuel for low and mid load operating conditions, and a high-octane additive is added at high load operating conditions. Researchers have focused on the minimum ethanol content required for operating at high load conditions when the low-octane fuel becomes knock limited. However, it is also widely known that ethanol has a high tendency to pre-ignite, which has been linked with its high laminar flame speed and surface ignition tendency. Moreover, ethanol has a lower stoichiometric air-fuel ratio, requiring a larger injected fuel mass per cycle. A larger fuel mass increases the potential for oil dilution by the liquid fuel, creating precursors for pre-ignition. Hence, the limits on ethanol addition owing to pre-ignition also need consideration before the technology can be implemented.
Technical Paper

A Study of Lean Burn Pre-Chamber Concept in a Heavy Duty Engine

2019-09-09
2019-24-0107
Due to stringent emission standards, the demand for higher efficiency engines has been unprecedentedly high in recent years. Among several existing combustion modes, pre-chamber spark ignition (PCSI) emerges to be a potential candidate for high-efficiency engines. Research on the pre-chamber concept exhibit higher indicated efficiency through lean limit extension while maintaining the combustion stability. In this study, a unique pre-chamber geometry was tested in a single-cylinder heavy-duty engine at low load lean conditions. The geometry features a narrow throat, which was designed to be packaged inside a commercial diesel injector pocket. The pre-chamber was fueled with methane while the main chamber was supplied with an ethanol/air mixture.
Technical Paper

Effect of Different Fluids on Injection Strategies to Suppress Pre-Ignition

2019-04-02
2019-01-0257
Pre-ignition is an abnormal engine combustion phenomenon where the inducted fuel-air charge ignites before the spark ignition. This premature combustion phenomenon often leads to heavy knocking events. The mixture preparation plays a critical role in pre-ignition tendency for a given load. Literature shows efforts made towards improving pre-ignition-limited-IMEP by splitting the injection pulse into multiple pulses. In this study, two direct injectors are used in a single cylinder research engine. A centrally mounted direct injector was used to inject Coryton Gasoline (RON 95) fuel early in the intake stroke. A second fluid was injected late in the compression stroke to suppress pre-ignition. The fluids used in the second direct injector was varied to see the effects of the molecule and its physical and chemical property on pre-ignition suppression tendency. Methanol, ethanol, water, and gasoline were tested as second fluid.
Technical Paper

Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

2018-04-03
2018-01-0191
Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.
Technical Paper

Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

2018-04-03
2018-01-1246
Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock quality of a fuel through blending of high-octane fuel with a low octane fuel. Previous studies on Octane-on-Demand highlighted efficiency benefits depending on the combination of low octane fuel with high octane booster. The author recently published works with ethanol and methanol as high-octane fuels. The results of this work showed that the composition and octane number of the low octane fuel is significant for the blending octane number of both ethanol and methanol. This work focuses on toluene as the high octane fuel (RON 120). Aromatics offers anti-knock quality and with high octane number than alcohols, this work will address if toluene can provide higher octane enhancement.
Technical Paper

Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustion Modes

2017-10-08
2017-01-2256
The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions.
X