Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effects of Compression Ratio and Valve Overlap on Feasibility of HCNG Engines for Heavy-Duty Vehicles

2014-04-01
2014-01-1338
To counteract the harmful effects of vehicle emissions on humans and the environment, such as global warming due to greenhouse gases, there is a focus on gaseous fuels as an alternative energy source of transportation. Heavy-duty natural gas vehicles are widely used to improve the air quality of urban areas in Korea because natural gas has the advantage of low greenhouse gas emission levels. However, more in-depth study is required in order for clean fuel vehicles to hold a dominant position over well-developed diesel vehicles. It is difficult to meet reinforced emission standards with only a lean combustion strategy without an aftertreatment system in a lean-burn natural gas engine. Hydrogen-natural gas (HCNG) blends have been proposed as an alternative to improve fuel economy and emissions of lean-burn natural gas engines, since they have a wider flammability range and faster burning speed. HCNG blends could also play a role as a technical bridge for the hydrogen era.
Journal Article

Design Information Management of an On-Line Electric Vehicle Using Axiomatic Design

2010-04-12
2010-01-0279
Axiomatic design is utilized to identify the design characteristics of an On-Line Electric Vehicle and to manage the design information. The On-Line Electric Vehicle, which is being developed at the Korea Advanced Institute of Science and Technology, is a different concept of an electric vehicle from conventional electric vehicles which use the electric power of a charged battery(s). It is operated by an electric power supplied by the contactless power transmission technique between the roadway side and the vehicle. In other words, the power is transmitted based on the principle of an electric transformer. The On-Line Electric Vehicle can overcome the limitations of conventional electric vehicles such as the weight of the battery and driving distance problems. Because designers have little experience and knowledge about the On-Line Electric Vehicle in the developmental stage, an appropriate design guide is needed. The axiomatic approach is employed for the design process.
Technical Paper

Modeling and Simulation of Vehicle Electric Power System

2001-10-01
2001-01-3343
Since many electric and electronic systems are continuously added in a vehicle to meet various regulations and customer demands over the last decade, the demand on the electric power have been substantially increased. Furthermore the idle time fraction during the vehicle traveling has been increased due to the heavy urban traffic condition. The electric power system of the modern vehicle has to supply enough electrical energy to numerous electrical and electronic systems. A detailed understanding of the characteristics of the electric power system, electrical load demands, and driving environment such as road, season, and vehicle weight are required when the capacities of generator and battery are determined for a vehicle. In order to avoid an over or under design problem of the electric power system, a simulation program for electric power estimation is adequate.
Technical Paper

Vehicle electric power simulator for optimizing the electric charging system

2000-06-12
2000-05-0054
The electrical power system is the vital lifeline to most of the control systems on modern vehicles. The demands on the system are highly complex, and a detailed understanding of the system behavior is necessary both to the process of systems integration and to the economic design of a specific control system or actuator. The vehicle electric power system, which consists of two major components: a generator and a battery, has to provide numerous electrical and electronic systems with enough electrical energy. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. An easy-to-use and inexpensive simulation program may be needed to avoid the over/under design problem of the electric power system. A vehicle electric power simulator is developed in this study.
Technical Paper

The Effects of Tumble Flow on Lean Burn Characteristics in a Four-Valve SI Engine

1997-02-24
970791
The effects of tumble flow generated by various intake ports on the lean burn characteristics in a four-valve pentroof engine were investigated. Tumble intensities were tested for three intake ports of different entry angle; 25°, 20° and 15°. The flow characteristics in cylinder were measured under motored conditions with laser Doppler velocimetry. The lean burn performances were examined in an operating 4-cylinder engine. The combustion duration under lean mixture conditions were calculated by heat release analysis of the pressure trace. The flame developments in a single-cylinder optical engine were visualized with an image-intensified CCD camera to see the effect of different flow patterns with three inlet ports of strong and weak tumble. It was found that there is a correlation between the stronger tumble during induction and the higher convective velocity and turbulence levels at the time of ignition, which result in faster and stable combustion under lean mixture conditions.
X