Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Experimental Investigation of the Aerodynamic Benefits of Truck Platooning: Two- and Four-Vehicle Platoons

2021-04-06
2021-01-0942
A series of scaled wind tunnel tests are conducted to investigate the aerodynamic benefits of heavy vehicle platooning and the availability of cooling air for trailing vehicles on two- and four-vehicle platoons. To measure the aerodynamic drag, scale models are mounted onto a splitter plate by means of a low-friction linear bearing and a load cell located within each model trailer. In addition to drag, pressure measurements are made with a pitot probe positioned at the center of each model radiator grill. Four homogeneous, two-vehicle platoons are tested for spacings up to 300′ and six heterogeneous, four-vehicle platoons are tested with spacings ranging from 30′ to 50′. For the heterogeneous platoons, configurations are tested with one distinct heavy vehicle or medium duty vehicle, as well as with four distinct heavy vehicles. Over spacings of 15′ to 80′, the best performing homogeneous, two-vehicle platoons are comprised of a Supertruck tractor and straight frame trailer.
Technical Paper

Experimental Investigation of the Aerodynamic Benefits of Truck Platooning

2018-04-03
2018-01-0732
Lawrence Livermore National Laboratory (LLNL) has conducted a series of scaled wind tunnel tests to investigate the aerodynamic benefits of heavy vehicle platooning and the availability of cooling air for trailing vehicles on two- and three-vehicle platoons. To measure the aerodynamic drag, scale models are mounted onto a LLNL designed splitter plate by means of a low-friction linear bearing and a load cell located within each model trailer. In addition to drag, pressure measurements are made with a pitot probe positioned at the center of each model radiator grill. Particle Image Velocimetry (PIV) and Infrared Thermography (IRT) measurements are used to map the three-dimensional velocity field and flow structures around the vehicles.
Technical Paper

Injected Droplet Size Effects on Diesel Spray Results with RANS and LES Turbulence Models

2015-04-14
2015-01-0925
Injection spray dynamics is known to be of great importance when modeling turbulent multi-phase flows in diesel engines. Two key aspects of spray dynamics are liquid breakup and penetration, both of which are affected by the initial sizes of the injected droplets. In the current study, injection of liquid n-heptane is characterized with initial droplet sizes with diameters on the order of 0.10 - 0.25 nozzle diameters. This is done for a Reynolds Averaged Navier-Stokes (RANS) RNG k-ε turbulence model with a minimum grid size of 125 μm and for a Large Eddy Simulations (LES) viscosity turbulence model with a minimum grid size of 62.5 μm. The results of both turbulence models are validated against non-reacting experimental data from the Engine Combustion Network (ECN). The results show that the injected droplet sizes have a significant impact on both liquid and vapor penetration lengths.
Technical Paper

Investigation of a Trailer Underbody Fairing for Heavy Vehicle Aerodynamic Drag Reduction

2008-10-07
2008-01-2601
The drag reduction capability of a trailer underbody fairing is investigated using steady Reynolds-averaged Navier-Stokes simulations of a full-scale heavy vehicle traveling at highway speed within a crosswind. The flow field about the vehicle is modeled for two different fairing designs of varying length that yield reductions in the drag coefficient ranging from 0.013 to 0.042. Analysis of the trailer underbody flow field indicates that the fairings decrease the size of a recirculation zone that exists immediately downstream of the tractor drive wheels by providing a surface to which the separated underbody flow can reattach. A comparison of the pressure coefficients across the surface of the fairings demonstrates that the longer fairings produce greater pressure coefficients, hence resulting in a larger reduction in drag than the shorter fairings. One of the fairings is shown to outperform traditional trailer side skirts, which yield a reduction in the drag coefficient of 0.035.
Technical Paper

A Comparison of the Effect of Combustion Chamber Surface Area and In-Cylinder Turbulence on the Evolution of Gas Temperature Distribution from IVC to SOC: A Numerical and Fundamental Study

2006-04-03
2006-01-0869
It has previously been shown experimentally and computationally that the process of Homogeneous Charge Compression Ignition (HCCI) is very dependent on the pre-combustion gas temperature field. This study looks in detail at how temperature fields can evolve by comparing results of two combustion chamber designs, a piston with a square bowl and a disk shaped piston, and relates these temperature fields to measured HCCI combustion durations. The contributions of combustion chamber surface area and turbulence levels to the gas temperature evolution are considered over the crank angle range from intake valve closure to top-dead-center. This is a CFD study, whose results were transformed into traditional analysis methods of convective heat transfer (q=h*A*ΔT) and boundary layers.
Technical Paper

DOE's Effort to Reduce Truck Aerodynamic Drag Through Joint Experiments and Computations

2005-11-01
2005-01-3511
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the intelligent design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments related to drag reduction devices, and offer a brief discussion of our future direction.
Technical Paper

Computational Simulation of Tractor-Trailer Gap Flow with Drag-Reducing Aerodynamic Devices

2005-11-01
2005-01-3625
Computational simulations of the Modified Ground Transportation System1 (M-GTS), a 1/14th-scale simplified tractor-trailer geometry, are performed at both laboratory and full-scale Reynolds numbers using the NASA overset grid code OVERFLOW2. Steady Reynolds' Averaged Navier-Stokes (RANS) simulations are conducted to deepen the understanding of tractor-trailer gap flow structure, and to ascertain the time-averaged efficacy of tractor cab extenders and trailer-face splitter plates in reducing aerodynamic drag in typical crosswinds. Results of lab-scale simulations compare favorably to body force and particle image velocimetry (PIV) data obtained from University of Southern California (USC) experiments for two tractor-trailer gap lengths. Full-scale simulations highlight model geometry limitations and allude to the use of splitter plates in place of, or in conjunction with, tractor cab extenders.
Technical Paper

Analysis of the Effect of Geometry Generated Turbulence on HCCI Combustion by Multi-Zone Modeling

2005-05-11
2005-01-2134
This paper illustrates the applicability of a sequential fluid mechanics, multi-zone chemical kinetics model to analyze HCCI experimental data for two combustion chamber geometries with different levels of turbulence: a low turbulence disc geometry (flat top piston), and a high turbulence square geometry (piston with a square bowl). The model uses a fluid mechanics code to determine temperature histories in the engine as a function of crank angle. These temperature histories are then fed into a chemical kinetic solver, which determines combustion characteristics for a relatively small number of zones (40). The model makes the assumption that there is no direct linking between turbulence and combustion. The multi-zone model yields good results for both the disc and the square geometries. The model makes good predictions of pressure traces and heat release rates.
Technical Paper

Aerodynamic Drag of Heavy Vehicles (Class 7-8): Simulation and Benchmarking

2000-06-19
2000-01-2209
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. Experimental validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California (USC). Companion computer simulations are being performed by Sandia National Laboratories (SNL), Lawrence Livermore National Laboratory (LLNL), and California Institute of Technology (Caltech) using state-of-the-art techniques.
Technical Paper

Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

1999-04-26
1999-01-2238
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of- the-art techniques, with the intention of implementing more complex methods in the future.
Technical Paper

Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, And Empirical Validation

1999-03-01
1999-01-0509
This paper proposes a structure for the diesel combustion process based on a combination of previously published and new results. Processes are analyzed with proven chemical kinetic models and validated with data from production-like direct injection diesel engines. The analysis provides new insight into the ignition and particulate formation processes, which combined with laser diagnostics, delineates the two-stage nature of combustion in diesel engines. Data are presented to quantify events occurring during the ignition and initial combustion processes that form soot precursors. A framework is also proposed for understanding the heat release and emission formation processes.
X