Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

High-Fidelity Transient Thermal Modeling of a Brake Corner

2016-09-18
2016-01-1929
There is an increasing interest in transient thermal simulations of automotive brake systems. This paper presents a high-fidelity CFD tool for modeling complete braking cycles including both the deceleration and acceleration phases. During braking, this model applies the frictional heat at the interface on the contacting rotor and pad surfaces. Based on the conductive heat fluxes within the surrounding parts, the solver divides the frictional heat into energy fluxes entering the solid volumes of the rotor and the pad. The convective heat transfer between the surfaces of solid parts and the cooling airflow is simulated through conjugate heat transfer, and the discrete ordinates model captures the radiative heat exchange between solid surfaces. It is found that modeling the rotor rotation using the sliding mesh approach provides more realistic results than those obtained with the Multiple Reference Frames method.
Journal Article

Analysis of Contamination Protection for Brake Rotor

2016-09-18
2016-01-1930
Contamination protection of brake rotors has been a challenge for the auto industry for a long time. As contamination of a rotor causes corrosion, and that in turn causes many issues like pulsation and excessive wear of rotors and linings, a rotor splash protection shield became a common part for most vehicles. While the rotor splash shield provides contamination protection for the brake rotor, it makes brake cooling performance worse because it blocks air reaching the brake rotor. Therefore, balancing between contamination protection and enabling brake cooling has become a key critical factor when the splash shield is designed. Although the analysis capability of brake cooling performance has become quite reliable, due to lack of technology to predict contamination patterns, the design of the splash protection shield has relied on engineering judgment and/or vehicle tests. Optimization opportunities were restricted by cost and time associated with vehicle tests.
Journal Article

Automotive Brake Hose Fluid Consumption Characteristics and Its Effects on Brake System Pedal Feel

2010-04-12
2010-01-0082
During the automotive brake system design and development process, a large number of performance characteristics must be comprehended, assessed, and balanced against each other and, at times, competing performance objectives for the vehicle under development. One area in brake development that is critical to customer acceptance due to its impact on a vehicle's perceived quality is brake pedal feel. While a number of papers have focused on the specification, quantification and modeling of brake pedal feel and the various subsystem characteristics that affect it, few papers have focused specifically on brake corner hoses and their effect on pedal feel, in particular, during race-track conditions. Specifically, the effects of brake hose fluid consumption pedal travel and brake system response is not well comprehended during the brake development process.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Technical Paper

General Motors Small Front Wheel Drive Six speed Automatic Transmission Family

2010-04-12
2010-01-0857
General Motors introduced a family of small front wheel drive six speed automatic transmissions for the 2008 model year. The family currently has two variants: 6T40 and 6T45, which cover a range of vehicles from small & compact cars to small SUVs and handle engines torque capacities up to 240 Nm Gas(280 Nm Diesel) & 315 Nm Gas (380 Nm Diesel) respectively. The 6T40/45 transmissions replace GM traditional four speed automatic wrap around transmissions 4T40/45. The wrap around transmissions have Torque Converter, Pump & Controls on the engine axis and the rest of the transmission content on the output axis. The 6T40/45 have an on-axis architecture with majority of the transmission content on the engine axis and final drive & differential on the output axis. The 4T40/45 have input chain transfer whereas the 6T40/45 have an output chain transfer.
Technical Paper

Friction Damped Disc Brake Rotor

2010-04-12
2010-01-0077
Over the last five years, the automotive industry has experienced a trend towards niche performance vehicles equipped with high-output powertrains. These high performance vehicles also demand higher output braking systems. One method used to provide enhanced pedal feel and fade performance is to equip vehicles with higher apparent friction linings. The challenge then becomes how to design and manufacture these brake systems without high-frequency disc brake squeal and without paying a significant mass penalty. One alternative is to design disc brake rotors with increased damping. There are several options for increasing rotor damping. The classical approach is to increase the rotor's cast iron carbon content, thus increasing the internal material damping of the rotor. However, this methodology provides only a small increase in rotor damping. Alternatively, the rotor damping can be increased by introducing friction, sometimes referred to as Coulomb damping.
Technical Paper

Diagnosis of Off-Brake Performance Issues with Low Range Pressure Distribution Sensors

2010-04-12
2010-01-0073
Brake caliper and corner behavior in the off-brake condition can lead, at times, to brake system performance issues such as residual drag (and related issues such as pulsation, judder, and loss of fuel economy), and caliper pryback during aggressive driving maneuvers. The dynamics in the brake corner can be strikingly complex, with numerous friction interfaces, rubber component and grease dynamics, deflections of multiple components, and significant dependence on usage conditions. Displacements of moving parts are usually small, and the residual forces in the caliper interfaces involved are also small in comparison with other forces acting on the same components, making direct observation very difficult. The present work attempts to illuminate off-brake behavior in two different conditions - residual drag and pryback - through the use of low-range pressure distribution sensors placed in between the caliper (pistons and fingers) and the brake pad pressure plates.
Technical Paper

General Motors DEXRON®-VI Global Service-Fill Specification

2006-10-16
2006-01-3242
During early 2005 General Motors released a newly developed ATF for the factory fill of all GM Powertrain stepped gear automatic transmissions. The new fluid provided significantly improved performance in terms of friction durability, viscosity stability, aeration and foam control and oxidation resistance. In addition, the fluid has the potential to enable improved fuel economy and extended drain intervals. Since the performance of the new fluid far exceeded that of the DEXRON®-III service fill fluids available at the time it became necessary to upgrade the DEXRON® service fill specification in order to ensure that similar fluids were available in the market for service and repair situations. This latest upgrade to the service fill specification is designated DEXRON®-VI [1].
Technical Paper

Fuel Economy and Performance Potential of a Five-Speed 4T60-E Starting Clutch Automatic Transmission Vehicle

2003-03-03
2003-01-0246
A wet multi-plate clutch, designated as the “starting clutch”, and a two-speed simple planetary gearset are used to replace the torque converter in the 4T60-E automatic transmission in order to study the potential improvement of vehicle fuel economy without sacrificing 0 - 60 mph acceleration performance. The starting clutch and the two-speed simple planetary gearset are designed to fit in the torque converter compartment. This paper describes the modified five-speed 4T60-E starting clutch automatic transmission system and provides vehicle test results to demonstrate its fuel economy and 0-60 mph performance potential.
Technical Paper

A Five-Speed Starting Clutch Automatic Transmission Vehicle

2003-03-03
2003-01-0248
A wet multi-plate clutch, designated as the “starting clutch”, is used to replace the torque converter in the automatic transmission in order to improve vehicle fuel economy. The transmission ratio spread must be increased to compensate for the torque multiplication of the torque converter and avoid penalizing the 0-60 mph acceleration performance. The main challenge of this concept is the control of the starting clutch to ensure acceptable vehicle drivability. This paper describes the system of a five-speed starting clutch automatic transmission vehicle and shows vehicle test results. Vehicle test data show that (i) the fuel economy benefit of the starting clutch is significant, and (ii) a starting clutch transmission can be designed to equal or better the 0-60 mph acceleration performance of a torque converter transmission by proper selection of the gear ratios.
Technical Paper

Automotive A/C System Integrated with Electrically-Controlled Variable Capacity Scroll Compressor and Fuzzy Logic Refrigerant Flow Management

2001-03-05
2001-01-0587
This paper describes the recent efforts on developing an automotive climate control system throughout integrating an electrically-controlled variable capacity scroll compressor with a fuzzy logic control-based refrigerant flow management. Applying electrically-controlled variable capacity compressor technology to climate control systems has a significant impact on improving vehicle fuel economy, achieving higher passenger comfort level, and extending air and refrigerant temperature controllability as well. In this regard, it is very important for automotive climate control engineers to layout a system-level temperature control strategy so that the operation of variable capacity compressor can be optimized through integrating the component control schemes into the system-level temperature control. Electronically controlled expansion devices have become widely available in automotive air conditioning (A/C) systems for the future vehicle applications(1, 2, 3 and 4).
Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Computational Flow Analysis of Brake Cooling

1997-02-24
971039
Air flow around the front brake assembly was computed using STAR-CD version 2.300, a commercial Computational Fluid Dynamics (CFD) code in order to explore the possibility of using this technique as a design tool. The primary objective in a brake corner assembly design is to maximize air cooling of the brake rotor. It is a very challenging task that requires experiments that are both expensive and time consuming in order to evaluate and optimize the various design possibilities. In this study, it is demonstrated that the design procedure can be shortened and made less expensive and be accurate using flow simulations. Accordingly, the air flow around the front brake assembly was computed for three different designs and for three different car speeds. A computational mesh was built using PROSTAR, the STAR-CD pre and post-processor. The three-dimensional mesh had almost 900,000 cells. All geometrical components were modelled.
Technical Paper

Analyzing Automotive Brake Components Using Birefringent Coating Technique

1993-03-01
930513
Engineers have used birefringent coating as a full field surface strain measuring tool for many years. The technique provides visual inspection of the structure on highly stressed areas that may lead to a potential structural failure. The usage of this technique for analysis of automotive brake components is very common. The recent development of the strain freezing technique extends further the capability of birefringent coating analysis. Hidden areas with high stresses can now be revealed for analysis.
Technical Paper

General Motors High Performance 4.3L V6 Engine

1992-02-01
920676
FIGURE 1 The 200 HP high performance 4.3L Vortec V6 engine has been developed to satisfy the need for a fuel efficient performance powerplant in the General Motors small truck platforms. Marketing requirements included strong low and mid range torque, relatively high specific power, smoothness and noise comparable to the best competitive six cylinder engines, excellent driveability, and a new technology image. Maintaining the 4.3L engine record of high reliability and customer satisfaction was an absolute requirement. Fuel economy and exhaust emission performance had to meet expected customer and legislated requirements in the mid 1990's.
Technical Paper

In-Use Fuel Economy of 1981 Passenger Cars

1982-02-01
820790
An owner survey was conducted to determine the owner-measured in-use fuel economy of 1981 model passenger cars. The in-use fuel economy has been compared to the Environmental Protection Agency's (EPA) fuel economy ratings. Data were analyzed to compare the influence of vehicle design parameters on the difference between in-use fuel economy and the EPA ratings. An analysis was also done to allow comparisons of in-use fuel economy from this survey with the results of a previously reported survey on 1980 models.
Technical Paper

Plasma Jet Ignition of Lean Mixtures

1975-02-01
750349
The development of a plasma jet ignition system is described on a 4-cyl, 140 in3 engine. Performance was evaluated on the basis of combustion flame photographs in a single-cylinder engine at 20/1 A/F dynamometer tests on a modified 4-cyl engine, and cold start emissions, fuel economy, and drivability in a vehicle at 19/1 air fuel ratio. In addition to adjustable engine variables such as air-fuel ratio and spark advance, system electrical and mechanical parameters were varied to improve combustion of lean mixtures. As examples, the air-fuel ratio range was 16-22/1, secondary ignition current was varied from 40 to 6000 mA, and plasma jet cavity and electrode geometry were optimized. It is shown that the plasma jet produces on ignition source which penetrates the mixture ahead of the initial flame front and reduces oxides of nitrogen emission, in comparison to a conventional production combustion chamber.
Technical Paper

Fuel Economy Trends and Catalytic Devices

1974-02-01
740594
In 1968, a major oil company cancelled its annual automobile economy run after sponsoring it for 18 consecutive years -presumably due to lack of interest from the public and the press. Almost coincident with that cancellation was the beginning of production automobile exhaust emission control on a national basis and a downward inflection in the historic trend of automobile fuel economy. In contrast, the past year has seen a major revival of interest, by both the public and the press, in fuel economy. In the next few weeks, the nation will be introduced to a new direction in automotive exhaust emission control which will profoundly affect the fuel economy trend. Perhaps equally, or even more important, the next few months are expected to see major national decisions on future automobile emission control which will likely have a significant influence on the direction taken by automobile fuel economy a few years hence.
X