Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup - System Testing

2002-07-15
2002-01-2401
NASA Ames Research Center and Lawrence Berkeley National lab have completed a three-year joint NRA research project on the use of waste biomass to make a gaseous contaminant removal system. The objective of the research was to produce activated carbon from life support wastes and to use the activated carbon to adsorb and remove incineration flue gas contaminants such as NOx. Inedible biomass waste from food production was the primary waste considered for conversion to activated carbon. Previous research at NASA Ames has demonstrated the adsorption of both NOx and SO2 on activated carbon made from biomass and the subsequent conversion of adsorbed NOx to nitrogen and SO2 to sulfur. This paper presents the results testing the whole process system consisting of making, using, and regenerating activated carbon with relevant feed from an actual incinerator. Factors regarding carbon preparation, adsorption and regeneration are addressed.
Technical Paper

Experimental Results Obtained with a Pilot Scale System to Remove Pollutants from an Incinerator Effluent

2002-07-15
2002-01-2395
Incineration is a promising method for converting biomass and human waste into CO2 and H2O during extended planetary exploration. Unfortunately, it produces NOX and other pollutants. TDA Research has developed a safe and effective process to remove NOX from waste incinerator product gas streams. In our process, NO is catalytically oxidized to NO2, which is then removed with a wet scrubber. In a SBIR Phase II project, TDA designed and constructed a pilot scale system, which will be used with the incinerator at NASA Ames Research Center. In this paper, we present test results obtained with our system, which clearly demonstrate the effectiveness of this approach to NOX control.
Technical Paper

Optimization of Waste Derived Elemental Use to Meet Demands of Crop Production of Selected BIO-Plex Crops

2000-07-10
2000-01-2285
In this paper we have developed a unique approach to providing the elements required for crop production in a steady-state condition, which is essential for Space habitats. The approach takes into consideration human elemental requirements and crop requirements for healthy growth and develops a method for the calculation of the rates of nutrient uptake for the different elements for different crops. The uptake rates can be used to calculate the rate of nutrient supply required in the hydroponic solution. This approach ensures that crops produced will not have excessive levels of elements that may be harmful to humans. It also provides an opportunity to optimize the processes of crop production and waste processing through highly controlled feed rates.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup

2000-07-10
2000-01-2283
This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NOx and SO2 contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NOx and SO2 in activated carbon made from biomass. Conversion of adsorbed NOx to nitrogen has also been observed.
Technical Paper

Incineration of Inedible Biomass in a Regenerative Life Support System - Developmental Efforts at NASA Ames Research Center

2000-07-10
2000-01-2282
Of the many competing technologies for resource recovery from solid wastes for long duration manned missions such as a lunar or Mars base, incineration technology is one of the most promising and certainly the most well developed in a terrestrial sense. An incinerator was used to recover and recycle part of the waste produced during the Early Human Testing Initiative Phase 3 (EHTI 3) at Johnson Space Center. The fluidized bed incinerator developed for the EHTI testing was a joint initiative between Ames Research Center, University of Utah and Johnson Space Center. Though in no way an optimized system at that time, the fluidized bed combustor fulfilled the basic requirements of a resource recovery system. Valuable data was generated and problem areas, technology development issues and future research directions were identified during the EHTI testing.
X