Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Optical Analysis of a DISI Engine Cold Start-Up Strategy

2015-09-01
2015-01-1877
Particulate number (PN) standards in the current ‘Euro 6’ European emissions standards pose a challenge for engine designers and calibrators during the warm-up phases of cold direct injection spark ignition (DISI) engines. To achieve catalyst light-off in the shortest time, engine strategies are often employed which inherently use more fuel to attain higher exhaust temperatures. This can lead to the generation of locally fuel-rich regions within the combustion chamber and the emission of particulates. This investigation analyses the combustion structures during the transient start-up phase of an optical DISI engine. High-speed, colour 9 kHz imaging was used to investigate five important operating points of an engine start-up strategy whilst simultaneously recording in-cylinder pressure.
Technical Paper

The Characterisation of a Centrifugal Separator for Engine Cooling Systems

2015-04-14
2015-01-1693
It is an engineering requirement that gases entrained in the coolant flow of an engine must be removed to retain cooling performance, while retaining a volume of gas in the header tank for thermal expansion and pressure control. The main gases present are air from filling the system, exhaust emissions from leakage across the head gasket, and also coolant vapour. These gases reduce the performance of the coolant pump and lower the heat transfer coefficient of the fluid. This is due to the reduction in the mass fraction of liquid coolant and the change in fluid turbulence. The aim of the research work contained within this paper was to analyse an existing phase separator using CFD and physical testing to assist in the design of an efficient phase separator.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
X