Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Inhomogeneities in the End Gas Temperature Field on the Autoignition in SI Engines

2000-03-06
2000-01-0954
This paper reports an one–dimensional modeling procedure of the hot spot autoignition with a detailed chemistry and multi–species transport in the end gas in an SI engine. The governing equations for continuity of mass, momentum, energy and species for an one–dimensional, unsteady, compressible, laminar, reacting flow and thermal fields are discretized and solved by a fully implicit method. A chemical kinetic mechanism is used for the primary reference fuels n–heptane and iso–octane. This mechanism contains 510 chemical reactions and 75 species. The change of the cylinder pressure is calculated from both flame propagation and piston movement. The turbulent velocity of the propagating flame is modeled by the Wiebe function. Adiabatic conditions, calculated by minimizing Gibb's free energy at each time step, are assumed behind the flame front in the burned gas.
Technical Paper

Prediction of Heat Transfer to the Walls for Autoignition Related Situations in SI Engines

2000-03-06
2000-01-1084
A theoretical investigation is presented concerning how the heat transfer process from the gas in the combustion chamber, burned as well as the unburned gas regions, to the walls is affected by the autoignition phenomenon in SI engines. The zonal model in ref. [1] is adapted for the calculations. The radiative heat flux during the heat release period and the heat transfer in the thermal boundary layer by convection are predicted for situations when autoignition has occurred. The cylinder wall temperature is also used as a parameter in this study. The effects of engine operating parameters such as engine speed, timing of ignition, duration time of flame propagation and the fuel parameter Research Octane Number, i.e., RON, on the heat flux to the walls have been studied. The heat release is calculated for a detailed chemical kinetic model, refs. [1, 2 and 3].
Technical Paper

Investigation of End-Gas Temperature and Pressure Increases in Gasoline Engines and Relevance for Knock Occurrence

1997-05-01
971671
A detailed analysis of the end-gas temperature and pressure in gasoline engines has been performed. This analysis leads to a simplified zero-dimensional model, that considers both, the compression and the expansion of the end-gas by the piston movement, and the compression by the flame front. If autoignition occurs in the end-gas the sudden rise of the pressure and the heat release is calculated. The rate form of the first law of thermodynamics for a control volume combined with the mass conservation equation for an unsteady and a uniform-flow process are applied. The heat of formation in the end-gas due to the chemical activity has been taken into account. In addition, a chemical kinetic model has been applied in order to study the occurrence of autoignition and prediction of knock.
X