Refine Your Search

Topic

Author

Search Results

Technical Paper

Injection of Fuel at High Pressure Conditions: LES Study

2011-09-11
2011-24-0041
This paper presents a large eddy simulation study of the liquid spray mixing with hot ambient gas in a constant volume vessel under engine-like conditions with the injection pressure of 1500 bar, ambient density 22.8 kg/m₃, ambient temperature of 900 K and an injector nozzle of 0.09 mm. The simulation results are compared with the experiments carried out by Pickett et al., under similar conditions. Under modern direct injection diesel engine conditions, it has been argued that the liquid core region is small and the droplets after atomization are fine so that the process of spray evaporation and mixing with the air is controlled by the heat and mass transfer between the ambient hot gas and central fuel flow. To examine this hypothesis a simple spray breakup model is tested in the present LES simulation. The simulations are performed using an open source compressible flow solver, in OpenFOAM.
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Technical Paper

Effect of Temperature Stratification on the Auto-ignition of Lean Ethanol/Air Mixture in HCCI engine

2008-06-23
2008-01-1669
It has been known from multi-zone simulations that HCCI combustion can be significantly affected by temperature stratification of the in-cylinder gas. With the same combustion timing (i.e. crank angles at 50% heat release, denoted as CA50), large temperature stratification tends to prolong the combustion duration and lower down the in-cylinder pressure-rise-rate. With low pressure-rise-rate HCCI engines can be operated at high load, therefore it is of practical importance to look into more details about how temperature stratification affects the auto-ignition process. It has been realized that multi-zone simulations can not account for the effects of spatial structures of the stratified temperature field, i.e. how the size of the hot and cold spots in the temperature field could affect the auto-ignition process. This question is investigated in the present work by large eddy simulation (LES) method which is capable of resolving the in-cylinder turbulence field in space and time.
Technical Paper

Influence of the Wall Temperature and Combustion Chamber Geometry on the Performance and Emissions of a Mini HCCI Engine Fueled with Diethyl Ether

2008-04-14
2008-01-0008
Nowadays for small-scale power generation there are electrochemical batteries and mini engines. Many efforts have been done for improving the power density of the batteries but unfortunately the value of 1 MJ/kg seems to be asymptotic. If the energy source is an organic fuel which has an energy density of around 29 MJ/kg with a minimum overall efficiency of only 3.5%, this device would surpass the batteries. This paper is the fifth of a series of publications aimed to study the HCCI combustion process in the milli domain at high engine speed in order to design and develop VIMPA, Vibrating Microengine for Low Power Generation and Microsystems Actuation. Previous studies ranged from general characterization of the HCCI combustion process by using metal and optical engines, to more specific topics for instance the influence of the boundary layer and quenching distance on the quality of the combustion.
Technical Paper

Influence of the Compression Ratio on the Performance and Emissions of a Mini HCCI Engine Fueled Ether with Diethyl

2007-10-29
2007-01-4075
Power supply systems play a very important role in applications of everyday life. Mainly, for low power generation, there are two ways of producing energy: electrochemical batteries and small engines. In the last few years many improvements have been carried out in order to obtain lighter batteries with longer duration but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. If the energy source is an organic fuel with an energy density of around 29 MJ/kg and a minimum overall efficiency of only 3.5%, this device can surpass the batteries. Nowadays the most efficient combustion process is HCCI combustion which is able to combine high energy conversion efficiency and low emission levels with a very low fuel consumption. In this paper, an investigation has been carried out concerning the effects of the compression ratio on the performance and emissions of a mini, Vd = 4.11 [cm3], HCCI engine fueled with diethyl ether.
Technical Paper

Improving Ion Current Feedback for HCCI Engine Control

2007-10-29
2007-01-4053
In HCCI you do not have the same control of the combustion like in SI and Diesel engines. Controlling the start of a combustion event is a difficult task and requires feedback from previous cycles. This feedback can be retrieved from ion current measurements. By applying a voltage over the spark gap, ions will lead a current and a signal that represents the combustion in the cylinder will be retrieved. Voltages of 450 V were used. The paper describes a new method to enhance the combustion phasing from the Ion current trace in HCCI engines. The method is using the knowledge of how the signal should look. This is known due to the fact that the shape of the ion current signal is similar from cycle to cycle. This new observation is shown in the paper. Also the correlation between the ion current and CA50 was studied. Later the signals have been used for combustion feedback.
Technical Paper

Mini High Speed HCCI Engine Fueled with Ether: Load Range, Emission Characteristics and Optical Analysis

2007-08-05
2007-01-3606
Power supply systems play a very important role in everyday life applications. There are mainly two ways of producing energy for low power generation: electrochemical batteries and small engines. In the last few years, many improvements have been carried out in order to obtain lighter batteries with longer durations but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. An energy source constituted of an organic fuel with an energy density around 29 MJ/kg and a minimum overall efficiency of only 3.5% could surpass batteries. Nowadays, the most efficient combustion process is HCCI combustion which has the ability to combine a high energy conversion efficiency with low emission levels and a very low fuel consumption. The present paper describes an investigation carried out on a modified model airplane engine, on how a pure HCCI combustion behaves in a small volume, Vd = 4.11 cm3, at very high engine speeds (up to 17,500 [rpm]).
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

The Effect of Displacement on Air-Diluted Multi-Cylinder HCCI Engine Performance

2006-04-03
2006-01-0205
The main benefit of HCCI engines compared to SI engines is improved fuel economy. The drawback is the diluted combustion with a substantially smaller operating range if not some kind of supercharging is used. The reasons for the higher brake efficiency in HCCI engines can be summarized in lower pumping losses and higher thermodynamic efficiency, due to higher compression ratio and higher ratio of specific heats if air is used as dilution. In the low load operating range, where HCCI today is mainly used, other parameters as friction losses, and cooling losses have a large impact on the achieved brake efficiency. To initiate the auto ignition of the in-cylinder charge a certain temperature and pressure have to be reached for a specific fuel. In an engine with high in-cylinder cooling losses the initial charge temperature before compression has to be higher than on an engine with less heat transfer.
Technical Paper

Multi-Output Control of a Heavy Duty HCCI Engine Using Variable Valve Actuation and Model Predictive Control

2006-04-03
2006-01-0873
Autoignition of a homogeneous mixture is very sensitive to operating conditions, therefore fast control is necessary for reliable operation. There exists several means to control the combustion phasing of an Homogeneous Charge Compression Ignition (HCCI) engine, but most of the presented controlled HCCI result has been performed with single-input single-output controllers. In order to fully operate an HCCI engine several output variables need to be controlled simultaneously, for example, load, combustion phasing, cylinder pressure and emissions. As these output variables have an effect on each other, the controller should be of a structure which includes the cross-couplings between the output variables. A Model Predictive Control (MPC) controller is proposed as a solution to the problem of load-torque control with simultaneous minimization of the fuel consumption and emissions, while satisfying the constraints on cylinder pressure.
Technical Paper

Combustion Chamber Wall Temperature Measurement and Modeling During Transient HCCI Operation

2005-10-24
2005-01-3731
In this paper the combustion chamber wall temperature was measured by the use of thermographic phosphor. The temperature was monitored over a large time window covering a load transient. Wall temperature measurement provide helpful information in all engines. This temperature is for example needed when calculating heat losses to the walls. Most important is however the effect of the wall temperature on combustion. The walls can not heat up instantaneously and the slowly increasing wall temperature following a load transient will affect the combustion events sucseeding the transient. The HCCI combustion process is, due to its dependence on chemical kinetics more sensitive to wall temperature than Otto or Diesel engines. In depth knowledge about transient wall temperature could increase the understanding of transient HCCI control. A “black box” state space model was derived which is useful when predicting transient wall temperature.
Technical Paper

Investigation of Boundary Layer Behaviour in HCCI Combustion using Chemiluminescence Imaging

2005-10-24
2005-01-3729
A five-cylinder diesel engine, converted to a single cylinder operated optical engine is run in Homogeneous Charge Compression Ignition (HCCI) mode. A blend of iso-octane and n-heptane is used as fuel. An experimental study of the horizontal boundary layer between the main combustion and the non-reacting surface of the combustion chamber is conducted as a function of speed, load, swirl and injection strategy. The combustion behaviour is monitored by chemiluminescence measurements. For all cases an interval from -10 to 16 crank angles after top dead center (CAD ATDC) in steps of one CAD are studied. One image-intensified camera observes the boundary layer up close from the side through a quartz cylinder liner while a second camera has a more global view from below to see more large scale structure of the combustion. The averaged chemiluminescence intensity from the HCCI combustion is seen to scale well with the rate of heat release.
Technical Paper

High-Speed LIF Imaging for Cycle-Resolved Formaldehyde Visualization in HCCI Combustion

2005-04-11
2005-01-0641
High-speed laser diagnostics was utilized for single-cycle resolved studies of the formaldehyde distribution in the combustion chamber of an HCCI engine. A multi-YAG laser system consisting of four individual Q-switched, flash lamp-pumped Nd:YAG lasers has previously been developed in order to obtain laser pulses at 355 nm suitable for performing LIF measurements of the formaldehyde molecule. Bursts of up to eight pulses with very short time separation can be produced, allowing capturing of LIF image series with high temporal resolution. The system was used together with a high-speed framing camera employing eight intensified CCD modules, with a frame-rate matching the laser pulse repetition rate. The diagnostic system was used to study the combustion in a truck-size HCCI engine, running at 1200 rpm using n-heptane as fuel. By using laser pulses with time separations as short as 70 μs, cycle-resolved image sequences of the formaldehyde distribution were obtained.
Technical Paper

Variable Valve Actuation for Timing Control of a Homogeneous Charge Compression Ignition Engine

2005-04-11
2005-01-0147
Autoignition of a homogeneous mixture is very sensitive to operating conditions. Therefore fast combustion phasing control is necessary for reliable operation. There are several means to control the combustion phasing of a Homogeneous Charge Compression Ignition (HCCI) engine. This paper presents cycle-to-cycle cylinder individual control results from a six-cylinder HCCI engine using a Variable Valve Actuation (VVA) system. As feedback signal, the crank angle for 50% burned, based on cylinder pressure, is used. Three control structures are evaluated, Model Predictive Control (MPC), Linear Quadratic Gaussian control (LQG) and PID control. In the control design of the MPC and LQG controller, dynamic models obtained by system identification were used. Successful experiments were performed on a port-injected six-cylinder heavy-duty Diesel engine operating in HCCI mode.
Technical Paper

Cylinder-to-Cylinder and Cycle-to-Cycle Variations at HCCI Operation With Trapped Residuals

2005-04-11
2005-01-0130
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. It is important to gain knowledge of the constraints and limits on the possible operating region. In this work, the emphasis is on investigating how cycle-to-cycle and cylinder-to-cylinder deviations limit the operating region, how these effects change in different parts of the operating region and how they can be controlled. At low load the cycle-to-cycle phenomena cause periodic behavior in combustion timing; together with cylinder deviations this is found responsible for decreasing the operating regime.
Technical Paper

Start of Injection Strategies for HCCI-combustion

2004-10-25
2004-01-2990
Homogeneous Charge Compression Ignition (HCCI) has a great potential for low NOx emissions but problems with emissions of unburned hydrocarbons (HC). One way of reducing the HC is to use direct injection. The purpose of this paper is to present experimental data on the trade off between NOx and HC. Injection timing, injection pressure and nozzle configuration all effect homogeneity of the mixture and thus the NOx and HC emissions. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. A common rail (CR) system has been used to control injection pressure and timing. The combustion using injectors with different nozzle hole diameters and spray angle, both colliding and non-colliding, has been studied. The NOx emission level changes with start of injection (SOI) and the levels are low for early injection timing, increasing with retarded SOI. Different injectors produce different NOx levels.
Technical Paper

Cycle-to-Cycle Control of a Dual-Fuel HCCI Engine

2004-03-08
2004-01-0941
A known problem of the HCCI engine is its lack of direct control and its requirements of feedback control. Today there exists several different means to control an HCCI engine, such as dual fuels, variable valve actuation, inlet temperature and compression ratio. Independent of actuation method a sensor is needed. In this paper we perform closed-loop control based on two different sensors, pressure and ion current sensor. Results showing that they give similar control performance within their operating range are presented. Also a comparison of two methods of designing HCCI timing controller, manual tuning and model based design is presented. A PID controller is used as an example of a manually tuned controller. A Linear Quadratic Gaussian controller exemplifies model based controller design. The models used in the design were estimated using system identification methods. The system used in this paper performs control on cycle-to-cycle basis. This leads to fast and robust control.
Technical Paper

Boosting for High Load HCCI

2004-03-08
2004-01-0940
Homogeneous Charge Compression Ignition (HCCI) holds great promises for good fuel economy and low emissions of NOX and soot. The concept of HCCI is premixed combustion of a highly diluted mixture. The dilution limits the combustion temperature and thus prevents extensive NOX production. Load is controlled by altering the quality of the charge, rather than the quantity. No throttling together with a high compression ratio to facilitate auto ignition and lean mixtures results in good brake thermal efficiency. However, HCCI also presents challenges like how to control the combustion and how to achieve an acceptable load range. This work is focused on solutions to the latter problem. The high dilution required to avoid NOX production limits the mass of fuel relative to the mass of air or EGR. For a given size of the engine the only way to recover the loss of power due to dilution is to force more mass through the engine.
Technical Paper

The Effect of Intake Temperature on HCCI Operation Using Negative Valve Overlap

2004-03-08
2004-01-0944
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. This implementation requires only minor modifications of the standard SI engine and allows SI operation outside the operating range of HCCI. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. A heat exchanger is utilized to heat or cool the intake air, not as a means of combustion control but in order to simulate realistic variations in ambient temperature. The combustion is monitored in real time using cylinder pressure sensors. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. However, for a practical application the intake temperature will vary both geographically and from time to time.
Technical Paper

Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements

2003-10-27
2003-01-3147
In-cylinder flow measurements, conventional swirl measurements and CFD-simulations have been performed and then compared. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. Bowditch type optical access and flat piston is used. The cylinder head was also measured in a steady-flow impulse torque swirl meter. From the two-dimensional flow-field, which was measured in the interval from -200° ATDC to 65° ATDC at two different positions from the cylinder head, calculations of the vorticity, turbulence and swirl were made. A maximum in swirl occurs at about 50° before TDC while the maximum vorticity and turbulence occurs somewhat later during the compression stroke. The swirl centre is also seen moving around and it does not coincide with the geometrical centre of the cylinder. The simulated flow-field shows similar behaviour as that seen in the measurements.
X