Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Influence of Injection Strategies on Engine Efficiency for a Methanol PPC Engine

2019-09-09
2019-24-0116
Partially premixed combustion (PPC) is one of several advanced combustion concepts for the conventional diesel engine. PPC uses a separation between end of fuel injection and start of combustion, also called ignition dwell, to increase the mixing of fuel and oxidizer. This has been shown to be beneficial for simultaneously reducing harmful emissions and fuel consumption. The ignition dwell can be increased by means of exhaust gas recirculation or lower intake temperature. However, the most effective means is to use a fuel with high research octane number (RON). Methanol has a RON of 109 and a recent study found that methanol can be used effectively in PPC mode, with multiple injections, to yield high brake efficiency. However, the early start of injection (SOI) timings in this study were noted as a potential issue due to increased combustion sensitivity. Therefore, the present study attempts to quantify the changes in engine performance for different injection strategies.
Technical Paper

Literature Review on Dual-Fuel Combustion Modelling

2019-09-09
2019-24-0120
In the search for low greenhouse gas propulsion, the dual fuel engine provides a solution to use low carbon fuel at diesel-like high efficiency. Also a lower emission of NOx and particles can be achieved by replacing a substantial part of the diesel fuel by for example natural gas. Limitations can be found in excessively high heat release rate (combustion-knock), and high methane emissions. These limitations are strongly influenced by operating parameters and properties of the used (bio)-gas. To find the dominant relations between fuel properties, operating parameters and the heat release rate and methane emissions, a combustion model is beneficial. Such a model can be used for optimizing the process, or can even be used in real time control. As precursor for such a model, the current state of art of dual fuel combustion modelling is investigated in this work. The focus is on high speed dual fuel engines for heavy duty and marine applications, with a varying gas/diesel ratio.
Technical Paper

Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine

2019-09-09
2019-24-0009
In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution.
Technical Paper

Measurement of Gasoline Exhaust Particulate Matter Emissions with a Wide-Range EGR in a Heavy-Duty Diesel Engine

2019-04-02
2019-01-0761
A large number of measurement techniques have been developed or adapted from other fields to measure various parameters of engine particulates. With the strict limits given by regulations on pollutant emissions, many advanced combustion strategies have been developed towards cleaner combustion. Exhaust gas recirculation (EGR) is widely applied to suppress nitrogen oxide (NOx) and reduce soot emissions. On the other hand, gasoline starts to be utilized in compression ignition engines due to great potential in soot reduction and high engine efficiency. New engine trends raise the need for good sensitivity and suitable accuracy of the PM measurement techniques to detect particulates with smaller size and low particulate mass emissions. In this work, we present a comparison between different measurement techniques for particulate matter (PM) emissions in a compression ignition engine running on gasoline fuel. A wide-range of EGR was used with lambda varied from 3 down to 1.
Technical Paper

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Technical Paper

The Relevance of Different Fuel Indices to Describe Autoignition Behaviour of Gasoline in Light Duty DICI Engine under PPC Mode

2019-04-02
2019-01-1147
Partially premixed combustion (PPC) with gasoline fuels is a new promising combustion concept for future internal combustion engines. However, many researchers have argued the capabilities of research octane number (RON) and Motor Octane Number (MON) to describe the autoignition behaviour of gasoline fuels in advanced combustion concepts like PPC. The objective of this study is to propose a new method, called PPC number, to characterize the auto ignition quality of gasoline fuels in a light-duty direct injected compression ignition engine under PPC conditions. The experimental investigations were performed on a 4-cylinder Volvo D4 2 litre engine. The ignition delay which was defined as the crank angle degrees between the start of injection (SOI) and start of combustion (SOC) was used to represent the auto ignition quality of a fuel.
Technical Paper

Simulation Based Investigation of Achieving Low Temperature Combustion with Methanol in a Direct Injected Compression Ignition Engine

2019-04-02
2019-01-1152
Low temperature combustion concepts used in compression ignition engines have shown to be able to produce simultaneous reduction of oxides of nitrogen and soot as well as generating higher gross indicated efficiencies compared to conventional diesel combustion. This is achieved by a combination of premixing, dilution and optimization of combustion phasing. Low temperature combustion can be complemented by moving away from fossil fuels in order to reduce the net output of CO2 emissions. Alternative fuels are preferably liquid and of sufficient energy density. As such methanol is proposed as a viable option. This paper reports the results from a simulation based investigation on a heavy-duty multi-cylinder direct injection compression ignition engine with standard compression ratio. The engine was simulated using two different fuels: methanol and gasoline with an octane number of 70.
Technical Paper

Cylinder to Cylinder Variation Related to Gas Injection Timing on a Dual-Fuel Engine

2019-04-02
2019-01-1162
The natural gas/diesel dual-fuel engine is an interesting technique to reduce greenhouse gas emission. A limitation of this concept is the emission of un-combusted methane. In this study we analyzed the influence of PFI gas-injection timing on cylinder to cylinder gas-distribution, and the resulting methane emissions. This was done on a 6 cylinder HD engine test bench and in a GT-power simulation of the same engine. The main variable in all tests was the timing of the intake port gas injection, placed either before, after, or during the intake stroke. It showed that injecting outside of the intake window resulted in significant variation of the amount of trapped gaseous fuel over the 6 cylinders, having a strong impact on methane emissions. Injecting outside of the intake stroke results in gas awaiting in the intake port. Both testing and simulation made clear that as a result of this, cylinder 1 leans out and cylinder 6 enriches.
Technical Paper

Development of TLP-AI Technology to Realize High Temperature Operation of Power Module

2019-04-02
2019-01-0607
Application of SiC power devices is regarded as a promising means of reducing the power loss of power modules mounted in power control units. Due to those high thermostable characteristics, the power module with SiC power devices are required to have higher operating temperature than the conventional power module with Si power devices. However, the limitations of current packaging technology prevent the utilization of the full potential of SiC power devices. To resolve these issues, the development of device bonding technology is very important. Although transient liquid phase (TLP) bonding is a promising technology for enabling high temperature operation because its bonding layer has a high melting point, the characteristics of the TLP bonding layer tend to damage the power devices. This paper describes the development of a bonding technology to achieve high temperature operation using a stress reduction effect.
Technical Paper

Modeling of Engine Aftertreatment System Cooling for Hybrid Vehicles

2019-04-02
2019-01-0989
Exhaust aftertreatment systems are essential components in modern powertrains, needed to reach the low legislated levels of NOx and soot emissions. A well designed diesel engine exhaust aftertreatment system can have NOx conversion rates above 95%. However, to achieve high conversion the aftertreatment system must be warm. Because of this, large parts of the total NOx emissions come from cold starts where the engine has been turned off long enough for the aftertreatment system to cool down and loose its capacity to reduce NOx. It is therefore important to understand how the aftertreatment cools down when the engine in turned off. Experimental data for a catalyst cool-down process is presented and analyzed. The analysis shows that it is important to capture the spatial distribution of temperatures both in axial and radial directions. The data and analysis are used to design a catalyst thermal model that can be used for model based catalyst temperature monitoring and control.
Journal Article

Development of Strength Distributed Hot Stamp Parts

2019-04-02
2019-01-0522
1 Structural parts, such as the center pillar, are a multi-layer structure. They are a combination of high-strength panels and high-toughness panels, to control the deformation mode during a crash. If we can make this multi-layered structure as one panel, consisting of different hardness within it, we will be able to make a lightweight part. In this study, we have developed a method to fabricate a ‘lightweight center pillar’ with the following processes. First, the whole panel is hardened by quenching within the hot stamp process. Next, certain areas of the panel are softened by partial tempering. We have found that the temperature zone for softening is between A1 and A3, and it is easy to perform a rapid and accurate tempering by utilizing induction heating around the Curie temperature between A1 and A3 transformation temperature.
Technical Paper

Interaction between Fuel Jets and Prevailing Combustion During Closely-Coupled Injections in an Optical LD Diesel Engine

2019-04-02
2019-01-0551
Two imaging techniques are used to investigate the interaction between developed combustion from earlier injections and partially oxidized fuel (POF) of a subsequent injection. The latter is visualized by using planar laser induced fluorescence (PLIF) of formaldehyde and poly-cyclic aromatic hydrocarbons. High speed imaging captures the natural luminescence (NL) of the prevailing combustion. Three different fuel injection strategies are studied. One strategy consists of two pilot injections, with modest separations after each, followed by single main and post injections. Both of the other two strategies have three pilots followed by single main and post injections. The separations after the second and third pilots are several times shorter than in the reference case (making them closely-coupled). The closely-coupled cases have more linear heat release rates (HRR) which lead to much lower combustion noise levels.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Thermal Reduction of NOx in a Double Compression Expansion Engine by Injection of AAS 25 and AUS 32 in the Exhaust Gases

2019-01-15
2019-01-0045
The double compression expansion engine (DCEE) is a promising concept for high engine efficiency while fulfilling the most stringent European and US emission legislation. The complete thermodynamic cycle of the engine is split among several cylinders. Combustion of fuel occurs in the combustion cylinder and in the expansion cylinder the exhaust gases are over expanded to obtain high efficiency. A high-pressure tank is installed between these two cylinders for after-treatment purposes. One proposal is to utilize thermal reduction of nitrogen oxides (NOx) in the high-pressure tank as exhaust temperatures can be sufficiently high (above 700 °C) for the selective non-catalytic reduction (SNCR) reactions to occur. The exhaust gas residence time at these elevated exhaust temperatures is also long enough for the chemical reactions, as the volume of the high-pressure tank is substantially larger than the volume of the combustion cylinders.
Journal Article

NOx-Conversion Comparison of a SCR-Catalyst Using a Novel Biomimetic Effervescent Injector on a Heavy-Duty Engine

2019-01-15
2019-01-0047
NOx pollution from diesel engines has been stated as causing over 10 000 pre-mature deaths annually and predictions are showing that this level will increase [1]. In order to decrease this growing global problem, exhaust after-treatment systems for diesel engines have to be improved, this is especially so for vehicles carrying freight as their use of diesel engines is expected to carry on into the future [2]. The most common way to reduce diesel engine NOx out emissions is to use SCR. SCR operates by injecting aqueous Urea solution, 32.5% by volume (AUS-32), that evaporates prior the catalytic surface of the SCR-catalyst. Due to a catalytic reaction within the catalyst, NOx is converted nominally into Nitrogen and Water. Currently, the evaporative process is enhanced by aggressive mixer plates and long flow paths.
Technical Paper

Development of Low Pressure and High Performance GPF Catalyst

2018-04-03
2018-01-1261
Awareness of environmental protection with respect to the particulate number (PN) in the exhaust emissions of gasoline direct injection (GDI) engine vehicles has increased. In order to decrease the emission of particulate matter (PM), suppressing emissions by improving engine combustion, and/or filtering PM with a gasoline particulate filter (GPF) is effective. This paper describes the improvement of the coated GPF to reduce pressure drop while securing three-way performance and PN filtration efficiency. It was necessary to load a certain amount of washcoat on the GPF to add the three-way function, but this led to an increase in pressure drop that affected engine power. The pressure drop was influenced by the gas permeation properties of the filter wall.
Technical Paper

Development of High Accuracy and Quick Light-off NOx Sensor

2018-04-03
2018-01-0334
For the purpose of coping with the strengthening of NOx exhaust gas control and fuel consumption control, it is indispensable to improve the NOx purification capacity. In view of this, vehicle manufacturers are in the course of developing high performance SCR (Selective Catalytic Reduction) systems [1, 2]. For such SCR systems to be realized, high precision NOx sensors for carrying out urea injection quantity control and SCR degradation diagnosis are absolutely indispensable. Detection of NOx concentration by means of a NOx sensor is generally performed as follows: O2 is discharged by means of an O2 detection electrode; remaining NOx is decomposed by a NOx detection electrode; NOx concentration is then detected as electric current that flows when oxygen ions are conduct through solid electrolyte. In order to detect NOx of ppm-order, it is necessary to detect minute current of nA-order with high accuracy.
Journal Article

Investigation of Particle Number Emission Characteristics in a Heavy-Duty Compression Ignition Engine Fueled with Hydrotreated Vegetable Oil (HVO)

2018-04-03
2018-01-0909
Diesel engines are one of the most important power generating units these days. Increasing greenhouse gas emission level and the need for energy security has prompted increasing research into alternative fuels for diesel engines. Biodiesel is the most popular among the alternatives for diesel fuel as it is biodegradable and renewable and can be produced domestically from vegetable oils. In recent years, hydrotreated vegetable oil (HVO) has also gained popularity due to some of its advantages over biodiesel such as higher cetane number, lower deposit formation, storage stability, etc. HVO is a renewable, paraffinic biobased alternative fuel for diesel engines similar to biodiesel. Unlike biodiesel, the production process for HVO involves hydrogen as catalyst instead of methanol which removes oxygen content from vegetable oil.
Technical Paper

CFD Study of Low Soot Spray Combustionin a Heavy-Duty Diesel Engine

2018-04-03
2018-01-0186
This CFD study focuses on the influence of the nozzle diameter on the mixing process and the soot formation and oxidation process in a heavy-duty diesel engine. The CFD simulation is based on the Reynolds Averaged Navier-Stokes approach. The engine set-up is similar to an experimental case that showed rather low soot emission. The aim of the paper is to improve the understanding of the physics of the mixing process in a real engine environment with the attention to scrutinize its effect of fuel injection on combustion and soot emission. Two non-reacting cases with different injector nozzle diameters but constant injection pressure and their corresponding reacting cases are simulated with dynamic mesh motion and fuel spray modeling. The influence of injections on the mixing, combustion and emissions is analyzed and the simulation results are compared with the measurement data.
Journal Article

A Study on Optimal Powertrain Sizing of Plugin Hybrid Vehicles for Minimizing Criteria Emissions Associated with Cold Starts

2018-04-03
2018-01-0406
Plugin hybrid electric vehicles (PHEVs) have several attractive features in terms of reduction of greenhouse gas (GHG) emissions. Compared to conventional vehicles (CVs) that only have an internal combustion engine (ICE), PHEVs have better energy efficiency like regular hybrids (HEVs), allow for electrifying an appreciable portion of traveled miles, and have no range anxiety issues like battery-only electric vehicles (BEVs). However, in terms of criteria emissions (e.g., NOx, NMOG, HC), it is unclear if PHEVs are any better than HEVs or CVs. Unlike GHG emissions, criteria emissions are not continuously emitted in proportional quantities to fossil fuel consumption. Rather, the amount and type of criteria emissions is a rather complex function of many factors, including type of fuel, ICE temperature, speed and torque, catalyst temperature, as well as the ICE controls (e.g., fuel-to-air ratio, valve and ignition timing).
X