Refine Your Search

Topic

Search Results

Technical Paper

Switching Roller Finger Follower Meets Lifetime Passenger Car Durability Requirements

2012-09-10
2012-01-1640
An advanced variable valve actuation (VVA) system is characterized following end-of-life testing to enable fuel economy solutions for passenger car applications. The system consists of a switching roller finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve that are integrated into a four cylinder gasoline engine. The SRFF provides discrete valve lift capability on the intake valves. The motivation for designing this type of VVA system is targeted to improve fuel economy by reducing the air pumping losses during part load engine operation. This paper addresses the durability of a SRFF for meeting passenger car durability requirements. Extensive durability tests were conducted for high speed, low speed, switching, and cold start operation. High engine speed test results show stable valvetrain dynamics above 7000 engine rpm. System wear requirements met end-of-life criteria for the switching, sliding, rolling and torsion spring interfaces.
Technical Paper

Injury Risk Curves for the WorldSID 50th Male Dummy

2009-11-02
2009-22-0016
The development of the WorldSID 50th percentile male dummy was initiated in 1997 by the International Organization for Standardization (ISO/SC12/TC22/WG5) with the objective of developing a more biofidelic side impact dummy and supporting the adoption of a harmonized dummy into regulations. More than 45 organizations from all around the world have contributed to this effort including governmental agencies, research institutes, car manufacturers and dummy manufacturers. The first production version of the WorldSID 50th male dummy was released in March 2004 and demonstrated an improved biofidelity over existing side impact dummies. Full-scale vehicle tests covering a wide range of side impact test procedures were performed worldwide with the WorldSID dummy. However, the vehicle safety performance could not be assessed due to lack of injury risk curves for this dummy. The development of these curves was initiated in 2004 within the framework of ISO/SC12/TC22/WG6 (Injury criteria).
Technical Paper

Data-Driven Driving Skill Characterization: Algorithm Comparison and Decision Fusion

2009-04-20
2009-01-1286
By adapting vehicle control systems to the skill level of the driver, the overall vehicle active safety provided to the driver can be further enhanced for the existing active vehicle controls, such as ABS, Traction Control, Vehicle Stability Enhancement Systems. As a follow-up to the feasibility study in [1], this paper provides some recent results on data-driven driving skill characterization. In particular, the paper presents an enhancement of discriminant features, the comparison of three different learning algorithms for recognizer design, and the performance enhancement with decision fusion. The paper concludes with the discussions of the experimental results and some of the future work.
Technical Paper

Shudder Durability of a Wet Launch Clutch Part I – Thermal Study and Development of Durability Test Profile

2009-04-20
2009-01-0329
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. A test bench was designed. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle–parallel) and two separator plate conditions (nitrided and non–nitrided) were considered. Considerable improvement in performance was seen by changing from CVT fluid* to DCT fluid*. A thermal analysis based on thermal model predictions and measurement correlations was conducted. Comparisons of clutch configurations with four and five friction plates were done. The waffle and radial groove pattern showed better heat transfer than the waffle–parallel groove pattern.
Journal Article

Shudder Durability of a Wet Launch Clutch Part II - Durability Study

2009-04-20
2009-01-0330
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle-parallel) and two separator plate conditions (nitrided and non-nitrided) were considered. Durability testing consisted of a test profile, with 110 kJ energy per test cycle, developed earlier in this project. Materials A, B and C with nitrided separator plates reached the end of test criteria for the torque gradient and showed shudder. Materials B and C were more wear resistant as compared to materials A and D. The loss of friction coefficient (μ) was lower for materials B, C and D as compared to material A.
Journal Article

Reducing Power Demand for Heavy Suspension Tests

2008-04-14
2008-01-0690
Competitive pressures, globalization of markets, and integration of new materials and technologies into heavy vehicle suspension systems have increased demand for durability validation of new designs. Traditional Proving Ground and on-road testing for suspension development have the limitations of extremely long test times, poor repeatability and the corresponding difficultly in getting good engineering level data on failures. This test approach requires a complete vehicle driven continuously over severe Proving Ground events for extended periods. Such tests are not only time consuming but also costly in terms of equipment, maintenance, personnel, and fuel. Ideally multiple samples must be tested to accumulate equivalent millions of kilometers of operation in highly damaging environments.
Journal Article

The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles

2008-04-14
2008-01-0458
A key element of General Motors' Advanced Propulsion Technology Strategy is the electrification of the automobile. The objectives of this strategy are reduced fuel consumption, reduced emissions and increased energy security/diversification. The introduction of hybrid vehicles was one of the first steps as a result of this strategy. To determine future opportunities and direction, an extensive study was completed to better understand the ability of Plug-in Hybrid Electric Vehicles (PHEV) and Extended-Range Electric Vehicles (E-REV) to address societal challenges. The study evaluated real world representative driving datasets to understand actual vehicle usage. Vehicle simulations were conducted to evaluate the merits of PHEV and E-REV configurations. As derivatives of conventional full hybrids, PHEVs have the potential to deliver a significant reduction in petroleum usage.
Technical Paper

Measurements of Cycle to Cycle Variability of the Inlet Flow of Fuel Injectors Using LDA

2006-10-16
2006-01-3314
The focus of this research effort was to develop a technique to measure the cyclic variability of the mass injected by fuel injectors. Successful implementation of the measurement technique introduced in this paper can be used to evaluate injectors and improve their designs. More consistent and precise fuel injectors have the potential to improve fuel efficiency, engine performance, and reduce emissions. The experiments for this study were conducted at the Michigan State University Automotive Research Experiment Station. The setup consists of a fuel supply vessel pressurized by compressed nitrogen, a Dantec laser Doppler anemometry (LDA) system to measure the centerline velocity of fuel, a quartz tube for optical access, and a Cosworth IC 5460 to control the injector. The detector on the LDA system is capable of resolving Doppler bursts as short as 6μs, depending on the level of seeding, thus giving a detailed time/velocity profile.
Technical Paper

Simulation of Vehicle Exterior Sound Fields by High Frequency Boundary Element Method

2005-05-16
2005-01-2328
With Statistical Energy Analysis (SEA) proven to be a powerful tool for airborne noise analysis, the capability of predicting the exterior sound field around a vehicle at high frequencies (the load case in the SEA analysis) is of particular interest to OEMs and suppliers. This paper employs the High Frequency Boundary Element Method (HFBEM) to simulate the scattered exterior sound field distribution due to a monopole source. It is shown that the proposed method is able to efficiently predict the spatial and frequency averaged sound pressure levels reasonably well up to 10 kHz, even at points in the near field of the vehicle body.
Technical Paper

Full Vehicle Finite Element Model 4-Post Durability Analysis

2005-04-11
2005-01-1402
4-Post durability test simulations using a nonlinear FEA model have been executed by engineers responsible for structural durability performance and validation. An integrated Body and Chassis, full FEA model has been used. All components of the test load input were screened and only the most damaging events were incorporated in the simulation. These events included the Potholes, Belgian Block Tracks, Chatter Bump Stops, Twist Ditches, and Driveway Ramps. The CAE technology Virtual Proving Ground (eta/VPG®*) was used to model the full system and the 4-Post test fixtures. The nonlinear dynamic FE solver LS-DYNA** was used in this analysis. The fatigue damage of each selected event was calculated separately and then added together according to the test schedule. Due to the lack of stress/strain information from hardware test, only the analyzed fatigue damage results of the baseline model were scaled to correlate with physical test data.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

Robust Design of Glass Run-Channel Seal

2004-03-08
2004-01-1687
Glass run-channel seals are located between DIW (Door in White) and window glass. They are designed to allow window glass to move smoothly while other two major requirements are met; (1) Provide insulation to water leakage and noise, and (2) Stabilize the window glass during glass movement, door slamming and vehicle operation. For a robust glass guidance system, it is critical to minimize the variation of seal compression force. In addition, it is desired to maintain a low seal compression force, which meets the minimum requirement for insulating water leakage/noise and stabilizing the window glass, for enhancing the durability of glass guidance system. In this paper, a robust synthesis and design concepts on the glass run-channel seal is presented. The developed concept is demonstrated with test data.
Technical Paper

Integration of Physical and Virtual Tools for Virtual Prototype Validation and Model Improvement

2003-10-27
2003-01-2813
Hyundai Motor Company has combined physical and virtual testing tools to validate a full vehicle virtual prototype. Today a large number of physical tests are still required because the cycle of “design-build-test-change” relies on complex models of components and systems that typically are not easily validated. In order to shorten the development cycles, engineers perform multi-body simulations to dynamically excite components and systems and thereby estimate their durability under dynamic loads. The approach described herein demonstrates the feasibility of correlating the output from the corresponding physical and virtual prototype. Both synthetic and road load events are employed to excite physical and virtual vehicles, reveal difference in response, and ultimately improve the predictive capability of the model.
Technical Paper

Sound Decomposition - A Key to Improved Sound Simulation

2003-05-05
2003-01-1423
The sound field in a vehicle is one of the most complex environments being a mixture of multiple, correlated and uncorrelated sound sources. The simulation of vehicle interior sound has traditionally been produced by combining multiple test results where the influence of one source is enhanced while the other sources are suppressed, such as towing the vehicle on a rough surface for road noise, or measuring noise in a wind tunnel. Such methods are costly and provide inherent inaccuracies due to source contamination and lack of synchronization between sources. In addition they preclude the addition of analytical predictions into the simulation. The authors propose an alternative approach in which the component sounds are decomposed or separated from a single operating measurement and which provide the basis for accurate sound synthesis.
Technical Paper

Plane Stress Fracture Toughness Testing of Die Cast Magnesium Alloys

2002-03-04
2002-01-0077
Plane stress fracture behavior was measured for magnesium alloys AM60B, AM50A, and AZ91D produced by high-pressure die casting. Compact Tension (CT) specimens were obtained from plate samples with approximately 2-5 mm thickness. The compliance unloading technique was used to record crack extension for each specimen. The AM50A and AM60B specimens exhibited stable crack extension beyond ASTM E 1820 limits for Jmax (∼ 33 kJ m-2 and 22 kJ m-2, respectively) and Δamax (2.1 mm and 1.3 mm, respectively). The data were in good agreement with a power law fit for J vs. Δa. The AZ91D samples had unstable crack extension, with a flat R-curve and a critical fracture energy Jc of ∼ 7.5 kJ m-2. All fractures were by microvoid coalescence, initiated between the primary Mg grains and the brittle Mg17Al12 phase.
Technical Paper

Residual Forming Effects on Full Vehicle Frontal Impact and Body-in-White Durability Analyses

2002-03-04
2002-01-0640
Forming of sheet metal structures induces pre-strains, thickness variations, and residual stresses. Pre-strains in the formed structures introduce work hardening effects and change material fatigue properties such as stress-life or strain-life. In the past, crashworthiness and durability analyses have been carried out using uniform sheet thickness and stress- and strain-free initial conditions. In this paper, crashworthiness and durability analyses of hydroformed front rails, stamped engine rails and shock towers on a full vehicle and a Body-In-White structure are performed considering the residual forming effects. The forming effects on the crash performance and fatigue life are evaluated.
Technical Paper

The Steering Characterizing Functions (SCFs) and Their Use in Steering System Specification, Simulation, and Synthesis

2001-03-05
2001-01-1353
A set of functions for characterizing the mechanical properties of a steering “short gear” is described. They cover the kinematic, stiffness, assist, and friction performance of a power assisted (or manual) steering gear from the input shaft to the inner ends of the tie rods. Their use in describing the performance of a generalized steering gear is described. They have particular application to describing the steering feel performance of a vehicle. They can be used to specify the steering subsystem performance for desired steering feel for a given vehicle. They can also be used for experimental characterization of steering subsystems, can be used in vehicle dynamics simulations, and can be synthesized from a set of vehicle level performance targets. Along with their description, their use in simulation and methods to synthesize their values are described.
Technical Paper

Using Modal Parameters to Monitor Vehicle Changes During a Durability Test

2000-12-01
2000-01-3159
The objective of this work was to increase the effectiveness and efficiency of road simulation testing with an emphasis on obtaining more information from the laboratory test system. Attaining the objective was evaluated by the criteria: 1) was vehicle damage detected before a major failure, 2) were changes in test conditions that would result in over- or under-testing detected, 3) were vehicle and test system components that require maintenance detected and 4) did the changes detected provide a better understanding of the test specimen and analytical predictions. The tools used for this process were not integrated. An integrated set of tools would be required to make this a general-purpose technique
Technical Paper

Rationale for Technology Selections in GM's PNGV Precept Concept Car Based on Systems Analysis

2000-04-02
2000-01-1567
The CY2000 cornerstone goal of the Partnership for a New Generation of Vehicles (PNGV) is the demonstration in CY 2000 of a 5-passenger vehicle with fuel economy of up 80 mpg (3 l/100km). As a PNGV partner, GM will demonstrate a technology-demonstration concept vehicle, the Precept, having a lightweight aluminum-intensive body, hybrid-electric propulsion system and a portfolio of efficient vehicle technologies. This paper describes: 1) the strategy for the vehicle design including mass requirements, 2) the selection of dual axle application of regenerative braking and electric traction, and 3) the complementary perspective on energy management strategy. This paper outlines information developed through systems analysis that drove technology selections. The systems analyses relied on vehicle simulation models to estimate fuel economy associated with technology selections. Modeling analyses included consideration of both federal test requirements and more severe driving situations.
Technical Paper

The Use of Fatigue Sensitive Critical Locations in Correlation of Vehicle Simulation and In-Service Environments

1988-04-01
880807
A major challenge facing the vehicle simulation test laboratory is correlating (and thereby validating) the simulated “test track” with the In-service environment. This simulation is key to the use of data for durability analysis from the integrated design and testing engineering process. Presented here is an approach to integrating road simulation test and fatigue life analysis that produces needed results for test, design and analysis engineers. The core of the analysis is a fatigue-based “rig-to-road” comparison for an on-highway vehicle using strain-time data acquired at fatigue sensitive locations. The cyclic and fatigue damaging content of the field and simulation profiles are compared quantitatively for purposes of validating the laboratory lest, and to illustrate a method of reporting this validation to design and analysis engineers.
X