Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Introduction of the eGTU – An Electric Version of the Generic Truck Utility Aerodynamic Research Model

2024-04-09
2024-01-2273
Common aerodynamic research models have been used in aerodynamic research throughout the years to assist with the development and correlation of new testing and numerical techniques, in addition to being excellent tools for gathering fundamental knowledge about the physics around the vehicle. The generic truck utility (GTU) was introduced by Woodiga et al. [1] in 2020 following successful adoption of the DrivAer (Heft et al. [2]) by the automotive aerodynamics community with the goal to capture the unique flow fields created by pickups and large SUVs. To date, several studies have been presented on the GTU (Howard et. al 2021 [3], Gleason, Eugen 2022 [4]), however, with the increasing prevalence of electric vehicles (EVs), the authors have created additional GTU configurations to emulate an EV-style underbody for the GTU.
Technical Paper

Time-Domain Explicit Dynamic CAE Simulation for Brake Squeal

2023-05-08
2023-01-1061
Disc brake squeal is always a challenging multidisciplinary problem in vehicle noise, vibration, and harshness (NVH) that has been extensively researched. Theoretical analysis has been done to understand the mechanism of disc brake squeal due to small disturbances. Most studies have used linear modal approaches for the harmonic vibration of large models. However, time-domain approaches have been limited, as they are restricted to specific friction models and vibration patterns and are computationally expensive. This research aims to use a time-domain approach to improve the modeling of brake squeal, as it is a dynamic instability issue with a time-dependent friction force. The time-domain approach has been successfully demonstrated through examples and data.
Technical Paper

Model Based Systems Engineering Application in Automotive Industry

2023-04-11
2023-01-0091
Auto industry has faced constant challenges in the economic, technology and global trend in the recent years. This is changing the corporative mindset to find creative and innovative processes and methods to evolve the product development system to adjust and deliver competitive products that satisfy customers expectations. Integrating the work from different teams in an organization has been moving from simple roles and responsibilities definition with effective communication channels to a new vision where teamwork progresses in harmony and embraces change to satisfy customers as part of the process. The path to evolve work in engineering that relies on several computational tools continues. In this article, it is presented an integration of different tools to manage vehicle program changes using model-based systems engineering, the present work improves the reaction capabilities of the teams and enables to adjust to changes in the development of a vehicle.
Technical Paper

Evaluation of Drivers of Very Large Pickup Trucks: Size, Seated Height and Biomechanical Responses in Drop Tests

2023-04-11
2023-01-0649
This study focused on occupant responses in very large pickup trucks in rollovers and was conducted in three phases. Phase 1 - Field data analysis: In a prior study [9], 1998 to 2020 FARS data were analyzed; Pickup truck drivers with fatality were 7.4 kg heavier and 4.6 cm taller than passenger car drivers. Most pickup truck drivers were males. Phase 1 extended the study by focusing on the drivers of very large pickup trucks. The size of 1999-2016 Ford F-250 and F-350 drivers involved in fatal crashes was analyzed by age and sex. More than 90% of drivers were males. The average male driver was 179.5 ± 7.5 cm tall and weighed 89.6 ± 18.4 kg. Phase 2 – Surrogate study: Twenty-nine male surrogates were selected to represent the average size of male drivers of F-250 and F-350s involved in fatal crashes. On average, the volunteers weighed 88.6 ± 5.2 kg and were 180.0 ± 3.2 cm tall with a 95.2 ± 2.2 cm seated height.
Technical Paper

Reduced Order Metamodel Development Framework for NVH

2022-03-29
2022-01-0219
During the design conception of an automobile, typically low-fidelity physics-based simulations are coupled with engineering judgement to define key architectural components and subsystems which limits the capability to identify NVH issues arising from systems interaction. This translates to non-optimal designs because of unexplored design opportunities and therefore, lost business efficiencies. The sparse design information available during the design conception phase limits the development of representative higher fidelity physics-based simulations. To address that restriction on design optimization opportunities, this paper introduces an alternate approach to develop reduced order predictive models using regression techniques by harnessing historical measurement and simulation data. The concept is illustrated using two driveline NVH phenomenon: axle whine and take-off shudder.
Journal Article

Latching Effort Predictions and its Design Characteristics Studies on Automotive Rear Seat

2022-03-29
2022-01-0339
Automotive Rear Seats are designed as foldable seats to provide more luggage space to customers when the seat is unoccupied. Foldable seats are of two types, Free Standing Seats and High Latch Seats. Free standing seats are designed with recliner mechanism which allows the seat back to rotate and lock at any given position. High Latch Seats are designed with latches operated by CAMs & Springs which locks with striker wire mounted on the body or side pillars. Recliner Mechanism on free standing seat helps to rotate and lock the seat back at any position with ease. But high latch seats require higher efforts to push the seats towards the striker wire to lock. Efforts (Force in N) required to latch the seats with striker wire need to be in the operating range of customers to latch it easily. Hence latching effort calculations and study of design factors which influence the latching efforts get more importance to avoid any customer complaints at later stage.
Journal Article

CAE Analysis and Auralization of Driveline Clunk NVH

2021-08-31
2021-01-1067
Noise and vibration evaluation of driveline clunk can be challenging as it is the result of driver input conditions and is transient in nature. As with many noise and vibration challenges, the use of computer-aided engineering (CAE) simulation is useful as it allows for detailed study of the phenomenon and prediction of potential improvements. A hybrid approach of physical test-based measurements and CAE analysis can be used to leverage the advantages of CAE in a comprehensive evaluation including the total vehicle noise, vibration, and harshness (NVH) performance. In this paper we present work performed to facilitate engineering evaluations of driveline clunk using both measured test and CAE simulation data. We explain how we used measured test data to inform the CAE analysis, how the simulation approached modelling of the transient clunk event, and how the measured data was used to provide contextual sound for realistic evaluation of the CAE output as heard by the passengers.
Technical Paper

Assessment of Exhaust Actuator Control at Low Ambient Temperature Conditions

2021-04-06
2021-01-0681
Exhaust sensors and actuators used in automotive applications are subjected to wide variety of operating ambient conditions , the performance of these actuators is challenging especially at cold ambient operating conditions, active exhaust tuning valves with position sensors are used to adjust the sound levels, or noise, vibration and harshness (NVH) from a control unit within the vehicle that leads to an improved driving experience wherein the driver selects their preferred sound levels. However, the operating behavior is crucially influenced by the characteristics of the drive cycle and ambient temperature. The study in this paper is intended to evaluate the icing formation at the start of drive cycle and at different ambient temperature conditions. The test data were obtained through real road and chassis dyno testing at different ambient conditions.
Technical Paper

Application of the Power-Based Fuel Consumption Model to Commercial Vehicles

2021-04-06
2021-01-0570
Fuel power consumption for light duty vehicles has previously been shown to be proportional to vehicle traction power, with an offset for overhead and accessory losses. This allows the fuel consumption for an individual powertrain to be projected across different vehicles, missions, and drive cycles. This work applies the power-based model to commercial vehicles and demonstrates its usefulness for projecting fuel consumption on both regulatory and customer use cycles. The ability to project fuel consumption to different missions is particularly useful for commercial vehicles, as they are used in a wide range of applications and with customized designs. Specific cases are investigated for Light and Medium Heavy- Duty work trucks. The average power required by a vehicle to drive the regulatory cycles varies by nearly a factor 10 between the Class 4 vehicle on the ARB Transient cycle and the loaded Class 7 vehicle at 65 mph on grade.
Technical Paper

A Detailed Aerodynamics Investigation of Three Variants of the Generic Truck Utility

2021-04-06
2021-01-0950
Three pickup truck variants of the Generic Truck Utility (GTU) are evaluated and compared using wind tunnel test data and computational fluid dynamics (CFD) simulations. The configurations analyzed are the short cab/long box, medium cab/medium box, and long cab/short box geometries, which all share a common vehicle length and wheelbase. Both cab and box length are known to influence the total bluff body drag through the interaction of the cab wake in the pickup box with the total vehicle wake, and the GTU provides an excellent test box to investigate the details of these interactions. Experimental testing was conducted at the WindShear wind tunnel on a full-scale GTU model, while transient CFD simulations were carried out with IconCFD®, an open-source based solver. Experimental and CFD results are used to describe the general flow field around the vehicle, and a comparison is made with the wind tunnel integral force data as well as centerline pressure tap data.
Journal Article

The GTU: A New Realistic Generic Pickup Truck and SUV Model

2020-04-14
2020-01-0664
Traditionally, ground vehicle aerodynamics has been researched with highly simplified models such as the Ahmed body and the SAE model. These models established and advanced the fundamental understanding of bluff body aerodynamics and have generated a large body of published data, however, their application to the development of passenger vehicles is limited by the highly idealized nature of their geometries. To date, limited data has been openly published on aerodynamic investigations of production vehicles, most likely due to the proprietary nature of production vehicle geometry. In 2012, Heft et al. introduced the realistic generic car model ‘DrivAer’ that better represents the flow physics associated with a typical production vehicle.
Technical Paper

The effects of contamination on commercial trucks rear suspension springs durability

2020-01-13
2019-36-0083
On current competitive scenario for road load transportation in Brazilian market, the operational costs should be reduced as much as possible. The suspension system commonly used on road commercial trucks is based on leaf spring use and Hotchkiss concept for axle locating devices. The use of leaf springs without bolt attachment eyelets are still common for rear suspension systems. When using the leaf spring with direct contact to the brackets, wear plates are placed between them to work as wear elements due to the friction between the parts. The friction will cause wear on the parts, and the wear plate is designed to suffer the damages of this friction instead of the leaf spring, being the cheapest element and can be easily replaced. When the system works on a severe contamination environment with high levels of grit and dirt, the degradation of the parts are accelerated.
Technical Paper

Buzz Avoidance on Sunroof Light Sunshades: Design and Validation

2020-01-13
2019-36-0148
Sunroof is placed in certain high-end vehicles to give user a better driving experience. All automakers are searching alternatives to reduce weight and cost in the vehicle, in which sunroofs are also impacted. Some alternatives are already applied, as a honeycomb paper used in some sunshades that presents benefits, as less weight and with a good cost reduction. Although, due the reduced weight for this part produced in this material, it shows more susceptibility to reproduce the vibration that vehicle propagates in movement, especially in bad condition roads. The sunroof assembly is dependent of the roof reinforcement and roof skin, but in this special case, the validation could be done in the components itself because the interaction of the sunshades is directly dependent of the other sunroof parts, as rails and front frame.
Technical Paper

Robustness Design to Avoid Noise on Exterior Handle System

2020-01-13
2019-36-0137
Squeak and rattle are two undesirable occurrences during component operation and during vehicle driving condition, resulting in one of the top complains from costumers. One common grievance could happen during the user exterior handle operation and during side door closing. The exterior handle system during the operation could generate a squeak between interface parts, if materials and geometric tolerances was not been carefully designed. Also, vibration generated during door closing effort, might generate squeak between parts since the reinforcement for exterior handle touches the outer sheet metal internally. For this reason several guidelines might be included to avoid potential noise condition for this system during vehicle lifetime as correct material reduce friction between parts, taking into consideration the geometric condition between parts. Plus, coupling system on handles two pieces should also be evaluated to avoid squeak during use.
Technical Paper

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

2019-09-15
2019-01-2141
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers. ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.
Technical Paper

Brake Pedal Feeling Comfort Analysis for Trucks with Pneumatic Brake System

2019-09-15
2019-01-2140
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
Technical Paper

Developing a Real-World, Second-by-Second Driving Cycle Database through Public Vehicle Trip Surveys

2019-07-08
2019-01-5074
Real-world second-by-second vehicle driving cycle data is very important for vehicle research and development. A project solely dedicated to generating such information would be tremendously costly and time consuming. Alternatively, we developed such a database by utilizing two publicly available passenger vehicle travel surveys: 2004-2006 Puget Sound Regional Council (PSRC) Travel Survey and 2011 Atlanta Regional Commission (ARC) Travel Survey. The surveys complement each other - the former is in low time resolution but covers driver operation for over one year whereas the latter is in high time resolution but represents only one-week-long driving operation. After analyzing the PSRC survey, we chose 382 vehicles, each of which continuously operated for one year, and matched their trips to all the ARC trips. The matching is carried out based on trip distance first, then on average speed, and finally on duration.
Technical Paper

Target Development for Transmission and Electric Motor NVH

2019-06-05
2019-01-1554
It is a common practice to conduct NVH fingerprinting and benchmarking assessments at the powertrain level, to understand source level noise and vibration. To assess the NVH influence of engine, e-motor, and transmission, sub-system testing is often conducted in addition to full powertrain testing. These powertrain or sub-system investigations provide valuable information regarding the status of “source” level excitations relative to targets and / or competitive powertrains. In the case of transmissions and e-machines, it is particularly important to understand source level tonal content and how this will be perceived at the vehicle level. However, variation in component design results in differences in order content, which complicates the process of objectively comparing multiple products. Multiple methods are presented here for characterizing tonal content of transmission and e-machines, based on assessments conducted in a component hemi-anechoic dynamometer test cell.
Technical Paper

An Analytical Methodology for Engine Gear Rattle and Whine Assessment and Noise Simulation

2019-04-02
2019-01-0799
In this paper, a CAE methodology based on a multiphysics approach for engine gear noise evaluation is reviewed. The method comprises the results and outputs from several different analytical domains to perform the noise risk assessment. The assessment includes the source-path analysis of the gear-induced rattling and whining noise. The vibration data from the exterior surface of the engine is extended through acoustic analysis to perform the engine noise simulation and to identify acoustic hot spots contributing to the noise. The study includes simulations under different engine loading conditions with results presented in both time and frequency domains. Various sensitivity analyses involving different gear geometries and micro-geometries are investigated as well. Finally, the simulation results from three different engines are compared vis-a-vis.
Technical Paper

Closures weatherstrips with variable cross sections

2018-09-03
2018-36-0152
Closures systems performance is a trade-off between NVH (Noise, Vibration and Harshness) and DCE (Door Closing Efforts) requirements. Dynamic sealing performance and sheet metal rigidity are the key contributors for a stable system. The seals actuate like a spring on the system. Higher seal load is good for NVH performance, adding more dumping to the system, but it will negatively affect DCE, as it will demand additional energy to close the system. Nominal seal load must be defined to achieve a balance between these attributes. This study is about dynamic sealing profiles with variable seal load, which provides tunable solutions to address the trade-off between NVH and DCE on the side doors or rear closures. Dynamic sealing weatherstrips are made of sponge EPDM extruded profiles with a specified load, defined by its CLD (Compression Load Deflection), which is given by the cross section design.
X