Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

CAATS - Automotive Wind Tunnel Test Techniques

2024-04-09
2024-01-2543
This paper contributes to the Committee on Commonized Aerodynamics Automotive Testing Standards (CAATS) initiative, established by the late Gary Elfstrom. It is collaboratively compiled by automotive wind tunnel users and operators within the Subsonic Aerodynamic Testing Association (SATA). Its specific focus lies in automotive wind tunnel test techniques, encompassing both those relevant to passenger car and race car development. It is part of the comprehensive CAATS series, which addresses not only test techniques but also wind tunnel calibration, uncertainty analysis, and wind tunnel correction methods. The core objective of this paper is to furnish comprehensive guidelines for wind tunnel testing and associated techniques. It begins by elucidating the initial wind tunnel setup and vehicle arrangement within it.
Technical Paper

Development of Detailed Surface Reaction Mechanism of CO/ NO/ O2 System for Three Way Catalyst Based on Gaseous and Surface Species Analyses

2023-09-29
2023-32-0122
In this study, we determined the detailed reaction mechanism of CO/NO/O2 for automotive three way catalysts. The N2O formation process obtained from measurements of the reaction properties and the formation process of adsorbed NCO species obtained from surface analysis of platinum group metals were added to a previous detailed surface reaction mechanism. The computational accuracy of the developed reaction mechanism was verified by the one-dimensional simulation software BOOST, and it was found to be sufficient for any combination of platinum group metals and gas concentrations.
Technical Paper

Advanced Rapid Combustion Concept Using Autoignition Assisted Flame for High Compression Ratio SI Engines

2023-09-29
2023-32-0119
To achieve higher thermal efficiency for spark- ignition (SI) engines, advanced rapid combustion technology under high compression ratio is needed. The results of single-cylinder preliminary engine tests using E.U. commercial fuel at 96 RON show that the higher the compression ratio, the faster the combustion speed. Additional engine test and computations using S5R five-component surrogate gasoline with reliable chemistry under various temperature and pressure conditions implied that the autoignition assisted flame played significant role under higher compression ratio conditions, i.e., high temperature and pressure conditions, where apparent increases in laminar flame speeds compared to conventional combustion.
Technical Paper

Fuel Consumption Improvement of a New Generation Diesel Engine for Passenger Cars by Quantitative Management of Thermal Efficiency Control Factors and Expansion of Load Range of Premixed Charge Compression Ignition Combustion

2023-09-29
2023-32-0022
To achieve carbon-neutrality, internal combustion engines need to further improve their thermal efficiency to reduce CO2 emissions. To accomplish this, it is necessary to quantify and enhance five factors that control indicated thermal efficiency: compression ratio, specific heat ratio, combustion duration, combustion timing, and heat transfer to wall. In this work, quantitative targets for each factor were defined, which were derived from a simulation that considered the influence of heterogeneity of diesel combustion on thermal efficiency. The simulation utilized a two-zone combustion model. In particular, the targets for the combustion duration, combustion timing and heat transfer to wall were increased significantly compared to those for a conventional engine, in anticipation of an expansion of the load range of premixed charge compression ignition (PCI) combustion to higher loads.
Technical Paper

Development of film heat transfer model based on multiphase flow numerical analysis

2023-09-29
2023-32-0012
Automobiles will have to be applied strict regulations such as Euro7 against PM, HC, CO. The generation of these components are related to fuel deposition to the wall surface of the combustion chamber. Therefore, the fuel injection model of engine combustion CFD requires accurate prediction about the deposition and vaporization of fuel on the combustion chamber. In this study, multiphase flow numerical analysis that simulates fuel behavior on the wall surface was conducted first. Then, two model formulae about the contact area and the heat flux of a liquid film was constructed based on the result of multiphase flow numerical analysis method. Finally, the new film heat transfer model was constructed from these model formulae. In addition, it was confirmed that new heat transfer model can predict the liquid film temperature obtained by multiphase flow numerical analysis method accurately.
Technical Paper

Influence of Combustion Mode on Heat Loss Distribution in Gasoline Engines

2023-09-29
2023-32-0075
As a technology to reduce the heat loss of engines, heat insulation coating to the surface of combustion chamber has been received a lot of attention. In order to maximize the thermal efficiency improvements by the technology, it is important to clarify the location where heat insulation coating can reduce heat loss more effectively, considering the impact on abnormal combustion etc. In this study, transient behavior of wall heat flux distribution on the piston was analyzed using 3D Computational Fluid Dynamics (CFD) for three combustion modes (spark ignition combustion (SI), homogenous charge compression Ignition (HCCI) and spark controlled compression ignition (SPCCI)).
Technical Paper

Vaporization and Turbulence Characteristics of High Pressure Gasoline Sprays Impinging on a Wall

2019-12-19
2019-01-2247
To get a better understanding of the characteristics of the high pressure gasoline sprays impinging on a wall, a fundamental study was conducted in a high-temperature high-pressure constant volume vessel under the simulated engine conditions of in-cylinder pressures, temperatures, and wall temperatures. The injection pressure was varied from 20 to 120 MPa. The spray tip penetration, vapor mass distribution, and vaporization rate were quantitatively measured with the laser absorption-scattering (LAS) technique. The velocity fields of the wall-impinging sprays under vaporizing conditions were measured with the particle image velocimetry (PIV) technique using silicone oil droplets as tracers. The effects of injection pressure and spray/wall interactions on spray characteristics were investigated. The results showed that the increased injection pressure improved penetration, vaporization, and turbulence of the sprays.
Technical Paper

Wall Heat Transfer Modeling Based on the Energy Equation For Zero Dimensional Engine Simulation

2019-12-19
2019-01-2313
It was important for predicting wall heat flux to apply wall heat transfer model by taking into account of the behavior of turbulent kinetic energy and density change in wall boundary layer. Although energy equation base wall heat transfer model satisfied above requirements, local physical amounts such as turbulent kinetic energy in near wall region should be applied. In this study, in order to predict wall heat transfer by zero dimensional analysis, how to express wall heat transfer by using mean physical amounts in engine combustion chamber was considered by experimental and numerical approaches.
Technical Paper

Development of Non-equilibrium Plasma and Combustion Integrated Model for Reaction Analysis

2019-12-19
2019-01-2349
Control of self-ignition timing in a HCCI engine is still a major technical issue. Recently, the application of a non-equilibrium plasma using repetitively discharge has been proposed as the promising technology. However, non-equilibrium plasma reaction in higher hydrocarbon fuel mixture is very complicated. Hence, there have been few calculation reports considering a series of reactions from non-equilibrium plasma production to high temperature oxidation process. In this study, 0-dimensional numerical simulation model was developed in which both reactions of plasma chemistry and high temperature oxidation combustion was taken into account simultaneously. In addition, an ODEs solver has been applied for the reduction of calculation time in the simulation. By comparing calculation results with experiment such as self-ignition timing, the validity of the developed numerical model has been evaluated.
Technical Paper

Heat Balance Analysis Using Cylinder Pressure Obtained by Engine Experiments Considering the Spatial Heterogeneity of Diesel Combustion

2019-12-19
2019-01-2228
The method described in this paper has been proposed to analyze the heat balance of diesel combustion from engine measurement data considering the heterogeneity of this type of combustion with use of a two-zone model composed of unburned and burned zones. This method is intended for practical application to an engine bench test during an engine development process and is characterized by the following features: A representative excess air ratio of the burned zone is set and assumed to be constant throughout the combustion period, and the ratio is estimated from NOx emission amount. The authors performed heat balance analyses on engine measurement data using the proposed method and made a comparison with the results of analyses that assumed a combustion chamber to be one homogenous zone.
Technical Paper

Development of Fuel Sloshing Evaluation Technique upon Crash Using Fluid-Structure Interaction Simulation

2019-04-02
2019-01-0941
In the development of fuel tank systems, it is important to maintain fuel system integrity even if a car accident occurs. When a fuel tank undergoes a sudden change in velocity, the fuel starts to move and deforms the tank walls and baffle plates, and then the deformation changes the flow pattern of fuel. Because interaction of fuel with tank components is the main cause of fuel spillage upon crash, it is important to predict complex fluid-structure interaction responses at an early stage of crash safety development with a multiphysics simulation. Development of the multiphysics simulation technique was conducted stepwise by examining “fluid motion” and “tank deformation.” First, a sled test of a rigid-wall tank with observation window was conducted to evaluate the fluid motion inside the tank. A numerical model was developed based on an ALE (Arbitrary Lagrangian Eulerian) algorithm for the fluid and a Lagrangian algorithm for the structure.
Technical Paper

Investigation of Increase in Aerodynamic Drag Caused by a Passing Vehicle

2018-04-03
2018-01-0719
On-road turbulences caused by sources such as atmospheric wind and other vehicles influence the flow field and increases the drag in a vehicle. In this study, we focused on a scenario involving a passing vehicle and investigated its effect on the physical mechanism of the drag increase in order to establish a technique for reducing this drag. Firstly, we conducted on-road measurements of two sedan-type vehicles passed by a truck. Their aerodynamic drag estimated from the base pressure measurements showed different increment when passed by the truck. This result raised the possibility of reducing the drag increase by a modification of the local geometry. Then, we conducted wind tunnel measurements of a simplified one-fifth scale vehicle model in quasi-steady state, in order to understand the flow mechanism of the drag increase systematically.
Technical Paper

Characteristics of Flat-Wall Impinging Spray Flame and Its Heat Transfer under Small Diesel Engine-Like Condition

2017-11-05
2017-32-0032
Heat loss is more critical for the thermal efficiency improvement in small size diesel engines than large-size diesel engines. More than half of total heat energy in the internal-combustion engine is lost by cooling through the cylinder walls to the atmosphere and the exhaust gas. Therefore, the new combustion concept is needed to reduce losses in the cylinder wall. In a Direct Injection (DI) diesel engine, the spray behavior, including spray-wall impingement has an important role in the combustion development to reduce heat loss. The aim of this study is to understand the mechanism of the heat transfer from the spray and flame to the impinging wall. Experiments were performed in a constant volume vessel (CVV) at high pressures and high temperatures. Fuel was injected using a single-hole injector with a 0.133 mm diameter nozzle. Under these conditions, spray evaporates, then burns near the wall. Spray/flame behavior was investigated with a high-speed video camera.
Technical Paper

Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal Deflections

2016-11-07
2016-22-0001
Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.
Technical Paper

Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level D

2016-11-07
2016-22-0016
Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.
Technical Paper

Biomechanical and Scaling Basis for Frontal and Side Impact Injury Assessment Reference Values

2016-11-07
2016-22-0018
In 1983, General Motors Corporation (GM) petitioned the National Highway Traffic Safety Administration (NHTSA) to allow the use of the biofidelic Hybrid III midsize adult male dummy as an alternate test device for FMVSS 208 compliance testing of frontal impact, passive restraint systems. To support their petition, GM made public to the international automotive community the limit values that they imposed on the Hybrid III measurements, which were called Injury Assessment Reference Values (IARVs). During the past 20 years, these IARVs have been updated based on relevant biomechanical studies that have been published and scaled to provide IARVs for the Hybrid III and CRABI families of frontal impact dummies. Limit values have also been developed for the biofidelic side impact dummies, BioSID, ES-2 and SID-IIs.
Technical Paper

Disc Brake Pad Corrosion Adhesion: Test-to-Field Issue Correlation, and Exploration of Friction Physical Properties Influence to Adhesion Break-Away Force

2016-09-18
2016-01-1926
Brake pad to rotor adhesion following exposure to corrosive environments, commonly referred to as “stiction”, continues to present braking engineers with challenges in predicting issues in early phases of development and in resolution once the condition has been identified. The goal of this study took on two parts - first to explore trends in field stiction data and how testing methods can be adapted to better replicate the vehicle issue at the component level, and second to explore the impacts of various brake pad physical properties variation on stiction propensity via a controlled design of experiments. Part one will involve comparison of various production hardware configurations on component level stiction tests with different levels of prior braking experience to evaluate conditioning effects on stiction breakaway force.
Journal Article

CVJ and Knuckle Design Optimization to Protect Inboard Wheel Bearing Seals from Splash

2016-09-18
2016-01-1956
For higher mileage vehicles, noise from contaminant ingress is one of the largest durability issues for wheel bearings. The mileage that wheel bearing sealing issues increase can vary due to multiple factors, such as the level of corrosion for the vehicle and the mating components around the wheel bearing. In general, sealing issues increase after 20,000 to 30,000 km. Protecting the seals from splash is a key step in extending bearing life. Benchmarking has shown a variety of different brake corner designs to protect the bearing from splash. This report examines the effect of factors from different designs, such as the radial gap between constant velocity joint (CVJ) slinger and the knuckle, knuckle labyrinth height and varying slinger designs to minimize the amount of splash to the bearing inboard seal. This report reviews some of the bearing seal failure modes caused by splash.
Journal Article

Vehicle Level Brake Drag Target Setting for EPA Fuel Economy Certification

2016-09-18
2016-01-1925
The strong focus on reducing brake drag, driven by a historic ramp-up in global fuel economy and carbon emissions standards, has led to renewed research on brake caliper drag behaviors and how to measure them. However, with the increased knowledge of the range of drag behaviors that a caliper can exhibit comes a particularly vexing problem - how should this complex range of behaviors be represented in the overall road load of the vehicle? What conditions are encountered during coastdown and fuel economy testing, and how should brake drag be measured and represented in these conditions? With the Environmental Protection Agency (amongst other regulating agencies around the world) conducting audit testing, and the requirement that published road load values be repeatable within a specified range during these audits, the importance of answering these questions accurately is elevated. This paper studies these questions, and even offers methodology for addressing them.
Technical Paper

Aerodynamics Evaluation of Road Vehicles in Dynamic Maneuvering

2016-04-05
2016-01-1618
A road vehicle’s cornering motion is known to be a compound motion composed mainly of forward, sideslip and yaw motions. But little is known about the aerodynamics of cornering because little study has been conducted in this field. By clarifying and understanding a vehicle’s aerodynamic characteristics during cornering, a vehicle’s maneuvering stability during high-speed driving can be aerodynamically improved. Therefore, in this study, the aerodynamic characteristics of a vehicle’s cornering motion, i.e. the compound motion of forward, sideslip and yaw motions, were investigated. We also considered proposing an aerodynamics evaluation method for vehicles in dynamic maneuvering. Firstly, we decomposed cornering motion into yaw and sideslip motions. Then, we assumed that the aerodynamic side force and yaw moment of a cornering motion could be expressed by superposing linear expressions of yaw motion parameters and those of sideslip motion parameters, respectively.
X