Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Vehicle Dash Mat SEA Modeling and Correlation

2007-05-15
2007-01-2310
The dash mat is one of the most important acoustic components in the vehicle for both powertrain noise and road noise attenuation. To optimize acoustic performance and mass requirements in the advanced development stage, analytical modeling is essential. The development of a detailed Statistical Energy Analysis (SEA) model of a dash mat is discussed in this paper. Modeling techniques and correlation with test are presented for two different production dash mat designs, a barrier-decoupler conventional system and a dual layer dissipative system without a mass barrier. The material properties and thickness distribution are used in the SEA model together with the geometry information of the dash panel. With the SEA model suitably correlated, trade-off studies are conducted to investigate the relationship between mass reduction of the barrier and change in decoupler thickness. The effects of air gaps are also considered in both modeling and testing.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

SEA Modeling of A Vehicle Door System

2005-05-16
2005-01-2427
The Door system is one of the major paths for vehicle interior noise under a variety of load conditions. In this paper we consider the elements of the door lower (excluding glass) in terms of noise transmission. Passenger car doors are comprised of the outer skin, door cavity, door inner sheet metal, vapor barrier, and interior trim. Statistical Energy Analysis (SEA) models must effectively describe these components in terms of their acoustic properties and capture the dominant behaviors relative to the overall door system. In addition, the models must interface seamlessly with existing vehicle level SEA models. SEA modeling techniques for the door components are discussed with door STL testing and model correlation results.
Technical Paper

Simulation of Vehicle Exterior Sound Fields by High Frequency Boundary Element Method

2005-05-16
2005-01-2328
With Statistical Energy Analysis (SEA) proven to be a powerful tool for airborne noise analysis, the capability of predicting the exterior sound field around a vehicle at high frequencies (the load case in the SEA analysis) is of particular interest to OEMs and suppliers. This paper employs the High Frequency Boundary Element Method (HFBEM) to simulate the scattered exterior sound field distribution due to a monopole source. It is shown that the proposed method is able to efficiently predict the spatial and frequency averaged sound pressure levels reasonably well up to 10 kHz, even at points in the near field of the vehicle body.
Technical Paper

Power-Based Noise Reduction Concept and Measurement Techniques

2005-05-16
2005-01-2401
This paper presents a Power-Based Noise Reduction (PBNR) concept and uses PBNR to set vehicle acoustic specifications for sound package design. This paper starts with the PBNR definition and describes the correct measurement techniques. This paper also derives the asymptotic relationships among PBNR, conventional noise reduction (NR), and sound transmission loss, for a simple case consisting of the source, path, and receiver subsystems. The advantages of using PBNR over conventional Noise Reduction (NR) are finally demonstrated in vehicle measurement examples.
Technical Paper

SEA in Vehicle Development Part II: Consistent SEA Modeling for Vehicle Noise Analysis

2003-05-05
2003-01-1547
In this paper, a model condensation technique is developed to ensure consistent modeling of STL (Sound Transmission Loss) between coarse and detailed SEA model. In the Performance-Based coarse SEA Model, the component level performance (STL and absorption) is assigned to each path, which comes from various ways including detailed analytical SEA model. From the detailed SEA model for the component or even the whole vehicle, the equivalent performance data needs to be condensed and extracted for the coarse model. The condensation theory for equivalent STL is presented in this paper. The extra work needed to apply this technique to detailed SEA model is negligible by using AutoSEA script. An example for condensation of a detailed component model is given at the end. Comparison between the detailed analytical SEA model and the coarse SEA Model is consistent.
Technical Paper

A FEA based Procedure to Perform Statistical Energy Analysis

2003-05-05
2003-01-1553
A technique which uses Finite Element Analysis (FEA) to derive important parameters involved in SEA (Statistical Energy Analysis) is discussed. Application of the method to a variety of structures has yielded good correlation with experimentally generated results. SEA parameters including Coupling Loss Factors (CLFs), modal densities, and subsystem equivalent masses were obtained. The technique has the advantage of incorporating structural detail to enhance SEA predictions at lower frequencies where global modes are important, and it can be applied early in the design phase since no hardware is required. With this study, SEA is more readily applied to structure-borne noise problems in vehicles.
X