Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

Drum Brake Out of Roundness Reduction to Improve Brake Pulsation

2008-04-14
2008-01-0825
The drum brake pulsation is an issue that may cause a major customer complaint. One of the root causes of the drum pulsation is the deformation of the drum to an out of roundness (OOR) shape during the wheel-drum-axle assembly process under the presence of the uneven wheel flatness. This paper summarizes the newly developed OOR simulation method using ABAQUS and the counter-measures to reduce the OOR, and subsequently pulsation, by identifying the drum design parameter effects on OOR.
Technical Paper

Designing Suspensions to Achieve Desirable Impact Harshness and Impact Shake Performance

2007-04-16
2007-01-0585
Impact Harshness and Impact Shake are two related aspects of ride performance. Vehicle designs often need to meet the conflicting requirements between these two performance areas. The fundamental dynamics and general effect of vehicle and suspension design parameters need to be understood to reduce the cost and time associated with early vehicle development and ensure built-in quality. This study investigates the influence of the parameters in suspension and tire wheel systems on each of the performance metrics. Attempts are made to rank-order the relative sensitivity of each parameter on each of the metrics and propose approaches to improve ride quality.
Technical Paper

A Method for Overcoming Limitations of Tire Models for Vehicle Level Virtual Testing

2006-04-03
2006-01-0499
The intention of this work is to illustrate a method used to overcome limitations of tire models developed during an evaluation study of an Empirical Dynamic™ (ED) damper model. A quarter vehicle test system was built to support the evaluation, and a model of the test system was also developed in ADAMS™. In the model, the damper was represented by a polynomial spline function and by an ED model separately. Vehicle level comparisons between the physical measurements and the model predictions were conducted. The actuator displacement signal from the physical test was used to drive the virtual test system. Spindle acceleration, spindle force, and other signals were collected for comparison. The tire model was identified as a significant source of error and as a result, the direct vehicle level correlation study did not illustrate any advantage of the ED damper model over a spline damper model.
Technical Paper

Fundamental Dynamics of Steering Wheel Torsional Vibration on Smooth Roads

2006-04-03
2006-01-0564
Steering Wheel Torsional Vibration (SWTV) at highway speed on smooth roads is one important attribute affecting vehicle refinement. To ensure desirable SWTV performance, achieve the best design compromises and minimize the development cost, specific design targets need to be defined and the proposed design needs to be assessed very early in the vehicle development cycle. In this paper, the fundamental dynamics of SWTV are analyzed and examples are given to demonstrate the strategies to reduce the SWTV response. Influence of design parameters on the SWTV response is predicted for four vehicle platforms. General guidelines for designing suspension and steering systems are discussed to ensure achieving SWTV targets.
Technical Paper

Dynamic Front Wheel Curb Impact Study

2005-04-11
2005-01-1401
A procedure was developed to predict suspension and cradle loads during a dynamic front wheel curb impact event. Previously, the only way to acquire these types of forces was to run a test. The procedure uses a multibody full vehicle ADAMS model. The impact between the tire and the curb was modeled using a simplified tire model. Specific structural suspension members were modeled with a proprietary method developed by GM to capture the elastic-plastic behavior. The analysis results showed good correlation with the test, and the procedure is now being used at GM.
Technical Paper

“Multi Vector” Field of View Design Tool

2004-03-08
2004-01-0380
A multi vector design tool to accurately predict instrument panel obscuration was developed to insure that critical legal displays in vehicles are not obscured. The concept provides for a computer generated light source shaped to replicate the human eyes. The light source is then projected onto a 3D math based arrangement and the resultant shadows are visible on the instrument panel surface and its displays. Design studios require criteria for the placement of the instrument cluster gages and displays, various controls, switches, and steering column stalks before an interior theme can be completed. Therefore, instrument panel obscuration and visibility must be determined early in the design process. The obscured areas are a function of the instrument panel surface, steering wheel rim, hub, spokes, and the location of the driver's eyes. This light source method allows engineers and designers the ability to quickly determine obscured areas.
Technical Paper

Development of the SAE Biaxial Wheel Test Load File

2004-03-08
2004-01-1578
Recently published SAE Recommended Practice J2562 - SAE Biaxial Wheel Test standardized the terminology, equipment, and test procedure for the biaxial wheel test. This test was originally presented by Fraunhofer Institut Betriebsfestigkeit - LBF (Fraunhofer Institute for Structural Durability) in SAE paper 830135 “Automotive Wheels, Method and Procedure for Optimal Design and Testing”. The first release of SAE J2562 included a generic, scalable load file applicable to wheels designed for five to eight passenger vehicles with capacity to carry a proportional amount of luggage or ballast. Future releases of SAE J2562 would include two additional load files; one applicable to light trucks that have substantial cargo capacity and one for sports cars typically limited to two passengers and marginal luggage. This report details the process used to develop the SAE Biaxial Wheel Test Load File for passenger vehicles.
Technical Paper

Correlation and Accuracy of a Wheel Force Transducer as Developed and Tested on a Flat-Trac® Tire Test System

1999-03-01
1999-01-0938
The wheel force transducer has been proven to be a cost and time effective tool for vehicle load data acquisition and simulation testing. The accuracy of wheel force transducers is typically given in terms of a static calibration, or a quasi-static system generated load case. The actual use of a wheel force transducer often involves high speed rotation, varying camber and steer of the tire on the vehicle, and other dynamic and rim related variations which deviate from the standard laboratory calibration. The Flat-Trac proves to be an excellent tool in the design process and evaluation of the wheel force transducer because it accurately controls and simulates the loading of a rotating wheel assembly. Through Flat-Trac System testing, issues that are critical to the use, accuracy, and integrity of data acquired through a wheel force transducer can be evaluated.
X