Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Integration of Physical and Virtual Tools for Virtual Prototype Validation and Model Improvement

2003-10-27
2003-01-2813
Hyundai Motor Company has combined physical and virtual testing tools to validate a full vehicle virtual prototype. Today a large number of physical tests are still required because the cycle of “design-build-test-change” relies on complex models of components and systems that typically are not easily validated. In order to shorten the development cycles, engineers perform multi-body simulations to dynamically excite components and systems and thereby estimate their durability under dynamic loads. The approach described herein demonstrates the feasibility of correlating the output from the corresponding physical and virtual prototype. Both synthetic and road load events are employed to excite physical and virtual vehicles, reveal difference in response, and ultimately improve the predictive capability of the model.
Technical Paper

Tools for Integration of Analysis and Testing

2003-05-05
2003-01-1606
The automotive vehicle design process has relied for many years on both analytical studies and physical testing. Testing remains to be required due to the inherent complexities of structures and systems and the simplifications made in analytical studies. Simulation test methods, i.e. tests that load components with forces derived from actual operating conditions, have become the accepted standard. Advanced simulation tools like iterative deconvolution methods have been developed to address this need. Analytical techniques, such as multi body simulation have advanced to the degree that it is practical to investigate the dynamic behavior of components and even full vehicles under the influence of operational loads. However, the approach of testing and analysis are quite unique and no seamless bridge between the two exists. This paper demonstrates an integrated approach to combine testing and analysis together in the form of virtual testing.
Technical Paper

Accurate Shock Absorber Load Modeling in an All Terrain Vehicle using Black Box Neural Network Techniques

2002-03-04
2002-01-0581
This paper presents the results of a study of using a neural network black box model of a shock absorber of an ATV (All Terrain Vehicle, four wheel drive, off road, single person vehicle) for accurate load modeling. This study is part of a larger investigation into the dynamic behavior and associated fatigue of an ATV vehicle, which is conducted under the auspices of the Fatigue Design and Evaluation Committee of SAE of North America (www.fatigue.org). The general objectives are to develop new correlated methodologies that will allow engineers to predict the durability of components of proposed vehicles by means of a “digital prototype” simulation. Current state of the art multi body dynamics predictions use linear frequency response functions or non-linear polynomial approximations to describe the behavior of non-linear suspension components such as shock absorbers or bushings.
Technical Paper

Servo Controller Compensation Methods Selection of the Correct Technique for Test Applications

1999-12-01
1999-01-3000
Servo-hydraulic test systems are used to apply precise loads and displacements to specimens as part of a program of evaluation in the laboratory. For the test system to correctly load the specimen the type of servohydraulic control must be carefully selected. Factors such as accuracy, repeatability, control range and stability depend on the matching of the control scheme to the characteristics of the test stand, specimen and the command profile. This paper reviews the compensation methods available with particular reference to practical applications of the different methods in the laboratory testing of automobiles from components of all types through sub-systems to full vehicles.
X