Refine Your Search

Topic

Author

Search Results

Technical Paper

A Data-driven Approach for Enhanced On-Board Fault Diagnosis to Support Euro 7 Standard Implementation

2024-04-09
2024-01-2872
The European Commission is going to publish the new Euro7 standard shortly, with the target of reducing the impact on pollutant emissions due to transportation systems. Besides forcing internal combustion engines to operate cleaner in a wider range of operating conditions, the incoming regulation will point out the role of On-Board Monitoring (OBM) as a key enabler to ensure limited emissions over the whole vehicle lifetime, necessarily taking into account the natural aging of involved systems and possible electronic/mechanical faults and malfunctions. In this scenario, this work aims to study the potential of data-driven approaches in detecting emission-relevant engine faults, supporting standard On-Board Diagnostics (OBD) in pinpointing faulty components, which is part of the main challenges introduced by Euro7 OBM requirements.
Technical Paper

Application of a One-Dimensional Dilution and Evaporation Lubricant Oil Model to Predict Oil Evaporation under Different Engine Operative Conditions Considering a Large Hydrogen-Fuelled Engine

2023-08-28
2023-24-0009
The increasing environmental concern is leading to the need for innovation in the field of internal combustion engines, in order to reduce the carbon footprint. In this context, hydrogen is a possible mid-term solution to be used both in conventional-like internal combustion engines and in fuel cells (for hybridization purposes), thus, hydrogen combustion characteristics must be considered. In particular, the flame of a hydrogen combustion is less subjected to the quenching effect caused by the engine walls in the combustion chamber. Thus, the significant heating up of the thin lubricant layer upon the cylinder liner may lead to its evaporation, possibly and negatively affecting the combustion process, soot production. The authors propose an analysis which aims to address the behavior of different typical engine oils, (SAE0W30, SAE5W30, SAE5W40) under engine thermo-physical conditions considering a large hydrogen-fuelled engine.
Technical Paper

Thermal Efficiency Enhancement for Future Rightsized Boosted GDI Engines - Effectiveness of the Operation Point Strategies Depending on the Engine Type

2021-09-05
2021-24-0009
Internal combustion engines are the primary transportation mover for today society and they will likely continue to be for decades to come. Hybridization is the most common solution to reduce the petrol-fuels consumption and to respect the new raw emission limits. The gasoline engines designed for running together with an electric motor need to have a very high thermal efficiency because they must work at high loads, where engine thermal efficiency is close to the maximum one. Therefore, the technical solutions bringing to thermal efficiency enhancement were adopted on HVs (Hybrid Vehicles) prior to conventional vehicles. In these days, these solutions are going to be adopted on conventional vehicles too. The purpose of this work was to trace development guidelines useful for engine designers, based on the target power and focused on the maximization of the engine thermal efficiency, following the engine rightsizing concept.
Technical Paper

PWI and DWI Systems in Modern GDI Engines: Optimization and Comparison Part II: Reacting Flow Analysis

2021-04-06
2021-01-0454
The water injection is one of the recognized technologies capable of helping the future engines to work at full load conditions with stoichiometric mixture. In the present work, a methodology for the CFD simulation of reacting flow conditions using AVL Fire code v. 2020 is applied for the assessment of the water injection effect on modern GDI engines. Both Port Water Injection and Direct Water Injection have been tested for the same baseline engine configuration under reacting flow conditions. The ECFM-3Z model adopted for combustion and knock simulations have been performed by adopting correlations for laminar flame speed, flame thickness and ignition delay times prediction, to consider the modified chemical behavior of the mixture due to the added water vapor.
Technical Paper

Development and Experimental Validation of a Control-Oriented Empirical Exhaust Gas Temperature Model

2020-09-27
2020-24-0008
Modern turbo-charged downsized engines reach high values of specific power, causing a significant increase of the exhaust gas temperature. Such parameter plays a key role in the overall powertrain environmental impact because it strongly affects both the catalyst efficiency and the turbine durability. In fact, common techniques to properly manage the turbine inlet gas temperature are based on mixture enrichment, which causes both a steep increase in specific fuel consumption and a decrease of catalyst efficiency. At the test bench, exhaust gas temperature is typically measured using thermocouples that are not available for on-board application, and such information is processed to calibrate open-loop look-up-tables. A real-time, reliable, and accurate exhaust temperature model would then represent a strategic tool for improving the performance of the engine control system.
Technical Paper

Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine

2020-09-27
2020-24-0003
This work focuses on the effects of cooled Low Pressure EGR and Water Injection observed by conducting experimental tests consisting mainly of Spark Advance sweeps at different cooled LP-EGR and WI rates. The implications on combustion and main engine performance indexes are then analysed and modelled with a control-oriented approach, showing that combustion duration and phase and exhaust gas temperature are the main affected parameters. Results show that cooled LP-EGR and WI have similar effects, being the associated combustion speed decrease the main cause of exhaust gas temperature reduction. Experimental data is used to identify control-oriented polynomial models able to capture the effects of LP-EGR and WI on both these aspects. The limitations of LP-EGR are also explored, identifying maximum compressor volumetric flow and combustion stability as the main ones.
Journal Article

Advanced Combustion Modelling of High BMEP Engines under Water Injection Conditions with Chemical Correlations Generated with Detailed Kinetics and Machine Learning Algorithms

2020-09-15
2020-01-2008
Water injection is becoming a technology of increasing interest for SI engines development to comply with current and prospective regulations. To perform a rapid optimization of the main parameters involved by the water injection process, it is necessary to have reliable CFD methodologies capable of capturing the most important phenomena. In the present work, a methodology for the CFD simulation of combustion cycles of SI GDI turbocharged engines under water injection operation is proposed. The ECFM-3Z model adopted for combustion and knock simulations takes advantages by the adoption of correlations for the laminar flame speed, flame thickness and ignition delay times prediction obtained by a detailed chemistry calculation. The latter uses machine learning algorithms to reduce the time to generate the full database while still maintaining an even distribution along the variables of interest.
Journal Article

The Use of Piezoelectric Washers for Feedback Combustion Control

2020-04-14
2020-01-1146
The use of piezoelectric cylinder pressure sensors is very popular during engine testing, but cylinder pressure information is becoming mandatory also in several on-board applications, where Low Temperature Combustion (LTC) approaches require a feedback control of combustion, due to poor combustion stability and the risk of knock or misfire. Several manufacturers showed the capability to develop solutions for cylinder pressure sensing in on-board automotive and aeronautical applications, and some of them have been patented. The most straight-forward approach seems the application of a piezo-electric washer as a replacement of the original part equipping the spark plug; the injector could also be used to transfer the cylinder pressure information to the piezoelectric quartz, in diesel or Gasoline Direct Injections (GDI) engines.
Technical Paper

Modeling, Validation and Control Strategy Development of a Hybrid Super Sport Car Based on Lithium Ion Capacitors

2020-04-14
2020-01-0442
Today, the contribution of the transportation sector on greenhouse gases is evident. The fast consumption of fossil fuels and its impact on the environment have given a strong impetus to the development of vehicles with better fuel economy. Hybrid electric vehicles fit into this context with different targets, starting from the reduction of emissions and fuel consumption, but also for performance and comfort enhancement. Lamborghini has recently invested in the development of a hybrid super sport car, due to performance and comfort reasons. Aventador series gearbox is an Independent Shift Rod gearbox with a single clutch and during gear shifts, as all the single clutch gearbox do, it generates a torque gap. To avoid the additional weight of a Dual Clutch Transmission, a 48V Electric Motor has been connected to the wheels, in a P3 configuration, to fill the torque gap, and to habilitate regenerative braking and electric boost functions.
Technical Paper

Combined Optimization of Energy and Battery Thermal Management Control for a Plug-in HEV

2019-10-07
2019-24-0249
This paper presents an optimization algorithm, based on discrete dynamic programming, that aims to find the optimal control inputs both for energy and thermal management control strategies of a Plug-in Hybrid Electric Vehicle, in order to minimize the energy consumption over a given driving mission. The chosen vehicle has a complex P1-P4 architecture, with two electrical machines on the front axle and an additional one directly coupled with the engine, on the rear axle. In the first section, the algorithm structure is presented, including the cost-function definition, the disturbances, the state variables and the control variables chosen for the optimal control problem formulation. The second section reports the simplified quasi-static analytical model of the powertrain, which has been used for backward optimization. For this purpose, only the vehicle longitudinal dynamics have been considered.
Technical Paper

Injection Pattern Investigation for Gasoline Partially Premixed Combustion Analysis

2019-09-09
2019-24-0112
Nowadays, compression-ignited engines are considered the most efficient and reliable technology for automotive applications. However, mainly due to the current emission regulations, that require increasingly stringent reductions of NOx and particulate matter, the use of diesel-like fuels is becoming a critical issue. For this reason, a large amount of research and experimentation is being carried out to investigate innovative combustion techniques suitable to simultaneously mitigate the production of NOx and soot, while improving engine efficiency. In this scenario, the combined use of compression-ignited engines and gasoline-like fuels proved to be very promising, especially in case the fuel is directly-injected in the combustion chamber at high pressure. The presented study analyzes the combustion process produced by the direct injection of small amounts of gasoline in a compression-ignited light-duty engine.
Technical Paper

Development and Software in the Loop Validation of a Model-based Water Injection Combustion Controller for a GDI TC Engine

2019-04-02
2019-01-1174
Turbocharged (TC) engines work at high Indicated Mean Effective Pressure (IMEP), resulting in high in-cylinder pressures and temperatures, improving thermal efficiency, but at the same time increasing the possibility of abnormal combustion events like knock and pre-ignition. To mitigate knocking conditions, engine control systems typically apply spark retard and/or mixture enrichment, which decrease indicated work and increase specific fuel consumption. Many recent studies have advocated Water Injection (WI) as an approach to replace or supplement existing knock mitigation techniques. Water reduces temperatures in the end gas zone due to its high latent heat of vaporization. Furthermore, water vapor acts as diluent in the combustion process. In this paper, the development of a novel closed-loop, model-based WI controller is discussed and critically analyzed.
Technical Paper

Conceptual Design and Analytic Assessment of 48V Electric Hybrid Powertrain Architectures for Passenger Cars

2019-04-02
2019-01-0353
To meet the requirements in relation to pollutants, CO2-emissions, performances, comfort and costs for 2025 timeframe, many technology options for the powertrain, that plays a key role in the vehicle, are possible. Beside the central aspect of reducing standard cycle consumption levels and emissions, consumer demands are also growing with respect to comfort and functionality. In addition, there is also the challenge of finding cost efficient ways of integrating technologies into a broad range of vehicles with different levels of hybridization. High degrees of electrification simultaneously provide opportunities to reduce the technology content of the internal combustion engines (ICE), resulting in a cost balancing compromise between combustion engine and hybrid technology. The design and optimization of powertrain topologies, functionalities, and components require a complex development process.
Technical Paper

Water Injection Applicability to Gasoline Engines: Thermodynamic Analysis

2019-04-02
2019-01-0266
The vehicle WLTP and RDE homologation test cycles are pushing the engine technology toward the implementation of different solutions aimed to the exhaust gases emission reduction. The tightening of the policy on the Auxiliary Emission Strategy (A.E.S.), including those for the engine component protection, faces the Spark Ignited (S.I.) engines with the need to replace the fuel enrichment as a means to cool down both unburnt mixture and exhaust gases to accomplish with the inlet temperature turbine (TiT) limit. Among the whole technology solutions conceived to make SI engine operating at lambda 1.0 on the whole operation map, the water injection is one of the valuable candidates. Despite the fact that the water injection has been exploited in the past, the renewed interest in it requires a deep investigation in order to outcome its potential as well as its limits.
Technical Paper

Remote Sensing Methodology for the Closed-Loop Control of RCCI Dual Fuel Combustion

2018-04-03
2018-01-0253
The continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at complying with upcoming increasingly stringent regulations throughout the world. Performing an efficient combustion control is crucial for efficiency increase and pollutant emissions reduction. These aspects are even more crucial for innovative Low Temperature Combustions (such as RCCI), mainly due to the high instability and the high sensitivity to slight variations of the injection parameters that characterize this kind of combustion. Optimal combustion control can be achieved through a proper closed-loop control of the injection parameters. The most important feedback quantities used for combustion control are engine load (Indicated Mean Effective Pressure or Torque delivered by the engine) and center of combustion (CA50), i.e. the angular position in which 50% of fuel burned within the engine cycle is reached.
Technical Paper

Investigation of Knock Damage Mechanisms on a GDI TC Engine

2017-09-04
2017-24-0060
The recent search for extremely efficient spark-ignition engines has implied a great increase of in-cylinder pressure and temperature levels, and knocking combustion mode has become one of the most relevant limiting factors. This paper reports the main results of a specific project carried out as part of a wider research activity, aimed at modelling and real-time controlling knock-induced damage on aluminum forged pistons. The paper shows how the main damage mechanisms (erosion, plastic deformation, surface roughness, hardness reduction) have been identified and isolated, and how the corresponding symptoms may be measured and quantified. The second part of the work then concentrates on understanding how knocking combustion characteristics affect the level of induced damage, and which parameters are mainly responsible for piston failure.
Journal Article

Injection Pattern Design for Real Time Control of Diesel Engine Acoustic Emission

2017-03-28
2017-01-0596
Upcoming more stringent emission regulations throughout the world pose a real challenge, especially in regard to Diesel systems for passenger cars, where the need of additional after-treatment has a big impact in terms of additional system costs and available packaging space. Therefore, the need for strategies that allow managing combustion towards lower emissions, that require a precise control of the combustion outputs, is definitely increasing. Acoustic emission of internal combustion engines contains a large amount of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. In particular, recent research from the same authors of this paper demonstrated that combustion noise can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy.
Journal Article

Individual Cylinder Air-Fuel Ratio Control for Engines with Unevenly Spaced Firing Order

2017-03-28
2017-01-0610
The most recent European regulations for two- and three-wheelers (Euro 5) are imposing an enhanced combustion control in motorcycle engines to respect tighter emission limits, and Air-Fuel Ratio (AFR) closed-loop control has become a key function of the engine management system also for this type of applications. In a multi-cylinder engine, typically only one oxygen sensor is installed on each bank, so that the mean AFR of two or more cylinders rather than the single cylinder one is actually controlled. The installation of one sensor per cylinder is normally avoided due to cost, layout and reliability issues. In the last years, several studies were presented to demonstrate the feasibility of an individual AFR controller based on a single sensor. These solutions are based on the mathematical modelling of the engine air path dynamics, or on the frequency analysis of the lambda probe signal.
Journal Article

Investigation on Pre-Ignition Combustion Events and Development of Diagnostic Solutions Based on Ion Current Signals

2017-03-28
2017-01-0784
Pre-ignition combustions are extremely harmful and undesired, but the recent search for extremely efficient spark-ignition engines has implied a great increase of the in-cylinder pressure and temperature levels, forcing engine operation to conditions that may trigger this type of anomalous combustion much more frequently. For this reason, an accurate on-board diagnosis system is required to adopt protective measures, preventing engine damage. Ion current signal provides relevant information about the combustion process, and it results in a good compromise between cost, durability and information quality (signal to noise ratio levels). The GDI turbocharged engine used for this study was equipped with a production ion current sensing system, while in-cylinder pressure sensors were installed for research purposes, to better understand the pre-ignition phenomenon characteristics, and to support the development of an on-board diagnostic system solely based on ion current measurements.
Technical Paper

Knock Control Based on Engine Acoustic Emissions: Calibration and Implementation in an Engine Control Unit

2017-03-28
2017-01-0785
In modern turbocharged downsized GDI engines the achievement of maximum thermal efficiency is precluded by the occurrence of knock. In-cylinder pressure sensors give the best performance in terms of abnormal combustion detection, but they are affected by long term reliability issues and still constitute a considerable part of the entire engine management system cost. To overcome these problems, knock control strategies based on engine block vibrations or ionization current signals have been developed and are widely used in production control units. Furthermore, previous works have shown that engine sound emissions can be real-time processed to provide the engine management system with control-related information such as turbocharger rotational speed and knock intensity, demonstrating the possibility of using a multi-function device to replace several sensors.
X