Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Tire Development for New Electric Vehicle through Driver in Loop Approach

2024-04-09
2024-01-2654
In recent years, the push for reduced product development timelines has been more than ever with significant changes in the automotive market. High electrification, intelligent vehicle systems and increased number for car manufacturers are a few key drivers to the same. The front loading of development activities is now a key focus area for achieving faster product development. From vehicle dynamics point of view availability of subjective evaluation feedback plays a key role in optimization various system specifications. This paper discusses an approach for front loading through parallel development of the tire and vehicle chassis system, using advanced simulation and driving simulator technology. The proposed methodology uses virtual tire models which in combination with real-time vehicle model enables subjective evaluation of vehicle performance in driver-in-loop simulators.
Technical Paper

A Methodology of Optimizing Steering Geometry for Minimizing Steering Errors

2024-01-16
2024-26-0062
The focus on driver and occupant safety as well as comfort is increasing rapidly while designing commercial vehicles in India. Improvements in the road network have enhanced road transport for commercial vehicles. Apart from the cost of operation and fuel economy, the commercial vehicles must deliver goods within stipulated time. These factors resulted in higher speed of operation for commercial vehicles. The design should not compromise the safety of the vehicle at these higher speeds of operation. The vehicle should obey the driver’s intended direction at all speeds and the response of the vehicle to driver input must be predictable without much larger surprises which can lead to accidents. The commercial vehicles are designed with rigid axle and RCB type steering system. This suspension and steering design combination introduce steering errors when vehicle travel over bump, braked and while cornering.
Technical Paper

Foam and FRP Sheets Packaging for Headliner Stiffness at Curtain Airbag Area

2024-01-16
2024-26-0008
As we all know, automotive headliners are an essential component of any car’s interior as they cover all the internal components and provide a clean and finished look. Headliners not only increase the aesthetic appeal of a car’s interior, but also acts as an insulation and sound absorption source. As per the latest Government norms, Curtain Airbag (henceforth called as CAB) has been made mandatory and this change calls for the corresponding changes in the Headliner packaging of all passenger vehicles. In general, curtain air-bag deployment calls for a twist open of Headliner at lateral sides (a portion below Hinge-line) during the deployment. This enables the inflated airbag to flow inside the passenger cabin to protect the passenger from any injury. Conventionally no components are packaged below the hinge-line area of headliner to avoid obstruction for CAB deployment and any part fly-off concerns.
Technical Paper

Integration of Seat-Belt Web-Guide Functionality in Trim Part

2024-01-16
2024-26-0018
Restraint systems in automotives are inevitable for the safety of passengers. Seat belts are one such restraint system in automotives that prevent drivers and passengers from being injured during a crash by restraining them back. Seatbelt on automotives has interface with Body-in-white (henceforth called as BIW) and Trim parts in-order to serve its purpose at vehicle level. One such interface part of seat belt is the web guide, which assists and ensures the nylon web’s smooth motion at different seat track positions. Web-guides on automotives ensure the flawless motion of seat belt web at pillar trim areas. In this paper, we are discussing alternate ways of assisting the seat belt web without the web-guide as a separate part. In-order to assist and ensure the motion of nylon web in its trajectory, we have extended the flange of the pillar trim involved.
Technical Paper

Improvement of Torque Density Using Output Reduction Method in Transmission

2023-11-10
2023-28-0050
Gears are one of the vital components to transmit torque efficiently. Helical gears are chosen as they transmit higher torque with lesser noise compared to spur gears of same size. All new age gearboxes require to transmit maximum torque with minimum packaging space available to improve torque density. Ways of reducing weight are using lesser density material, decreasing centre distance, and thereby reducing pitch circle diameter of all gears, etc. However, they will also affect torque carrying capacity of gearbox which can lead to gear failure in conventional transmission architecture gearboxes with input reduction method. In input reduction method, torque gets multiplied from input shaft to countershaft. Countershaft torque is multiplied to output shaft gears requiring higher torque capacity gears on output shaft. In this research, output shaft reduction architecture is proposed to avoid torque multiplication from input shaft to countershaft gears.
Technical Paper

Effect of Rolling Direction and Gauge Length on the Mechanical Properties of S460MC High Strength Low Alloy Steel

2023-05-25
2023-28-1329
Tensile Testing is one of the most used and highly reliable method of mechanical testing to evaluate the tensile properties of the material. However, there is a large scope for discussing the behavior of the metals based on the direction of rolling and the tensile specimen size used for testing. This paper discusses the variation observed in the tensile values along the direction of rolling and traverse to the direction of rolling for S460MC. It also evaluates the variation observed in the values based on the various gauge lengths (GL) commonly used in testing as per international standards (80mm, 50mm and 25mm GL). It is observed that perpendicular to the direction of rolling, the Yield and Tensile strength of the material increase marginally while the Elongation percentage (%E) decreases by a small margin irrespective of the gauge length taken into consideration.
Technical Paper

Effect of Varying Levels of Work Hardening and Bake Hardening on the Mechanical Properties of Dual Phase Steels

2023-05-25
2023-28-1331
In most cases, the properties of a metal are evaluated in their as rolled condition, prior to any work hardening or bake hardening. But in the Automotive World, these steels get work hardened during the forming process and bake hardened in the paint shop. The goal of this paper is to evaluate the variations in the performance of Dual Phase (DP) steels and understand the most optimized method of testing and property generation. This method can then be used to extrapolate to real automotive components. Dual Phase Steels or DP Steels contain a mixture of Ferrite & Martensite from which they derive their name. They are a part of the advanced high strength and ultra-high strength steels steel family according to World Auto Steels. The Ferrite phase, with its iron content contributes to the material displaying an increased level of ductility whilst, the martensitic phase provides the steel with increased mechanical strength.
Technical Paper

A Comprehensive Methodology to Design and Develop Suspension System Bolted Joints using Vehicle Test Loads and CAE Simulation

2023-04-11
2023-01-0608
The bolted joints in suspension systems are subjected to severe external service loads during vehicle operation. To prevent the loaded joint from loosening and allowing it to retain its potential energy stored during assembly, a holistic design approach is needed. This paper explains the methodology to design and optimize bolted joints for the suspension systems of a modern 7-seater sports utility vehicle.
Technical Paper

The Influence of the Material Construction of Leatherette in Squeak Noise Control

2023-04-11
2023-01-0075
PVC (polyvinylchloride) synthetic leather or called leatherette is being widely used for automotive interior applications for seat cover, gear boot, gap hider, steering wheel and roof liner due to their leather like feel and texture, flexibility, sewability, affordability, and wide design freedom. However, the leatherette construction such as top coating, backing fabric and fabric weaving pattern plays a critical role in the finished leatherette performance for the specific application. This study provides the influence of different coating material and different backing fabric in squeak behavior of gear boot PVC leatherette. The squeak behavior was studied by stick slip test as per automotive engineering requirements, and the response of these coating and fabric surface was measured in the form of Risk Priority Number (RPN).
Technical Paper

Investigation and Analysis of Brake Factor Variation and its Relation with Brake Pulling

2022-09-19
2022-01-1171
Vehicle pull during braking can be defined as the deviation of vehicle travel from intended path of the vehicle by a margin of half a wheel track or more. It is a dynamic phenomenon with very complex inter-dependencies among the combined functioning of various aggregates such as steering system, suspension system, axles, and brakes. The problem is aggravated with shorter wheelbase & higher CG (Centre of Gravity) height, where the instantaneous load transfers are sudden and of relatively high magnitude which can lead to a combination of forces that are responsible for vehicle drifting or pulling to anyone side of centre-line travel. Vehicle with shorter wheelbases, high GVW and high CG heights are more prone to this unstable behaviour due to sudden change in dynamic forces acting on the tires while turning and braking.
Technical Paper

Effect of Anti-Dive Suspension Geometry on Braking Stability

2022-09-19
2022-01-1172
Suspension plays a crucial role in stabilizing, comfort and performance of a vehicle. During vehicle braking operation, load transfer happens from rear axle to front axle resulting in shifting of vehicle’s center of gravity towards vehicle front for a momentarily duration which is called diving. This phenomenon leads to dropping of traction at rear wheel end resulting in lifting of rear axle with front wheel as pivot. This causes increase in front to rear weight ratio of vehicle system and compromising driver safety due to skidding and locking of rear wheel-end. To minimize this phenomenon’s affect, optimum anti-dive suspension geometry is used to have better rear wheel end traction resulting in improved braking stability.
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Technical Paper

A Holistic Approach of Developing New High Strength Cast Iron for Weight Optimization

2021-09-22
2021-26-0244
Foundry industries are very much familiar and rich experience of producing ferrous castings mainly Flake Graphite (FG) and Spheroidal Graphite (SG) cast iron. Grey cast iron material is mainly used for dampening applications and spheroidal graphite cast iron is used in structural applications wherein high strength and moderate ductility is necessary to meet the functional requirements. However, both types of cast iron grades are very much suitable in terms of manufacturing in an economical way. Those grades are commercially available and being consumed in various industries like automotive, agriculture etc, High strength SG Iron grades also being manufactured by modifying the alloying elements with copper, chromium, manganese andcobalt. but it has its own limitation of reduction in elongation when moving from low to high strength SG iron material. To overcome this limitation a new cast iron developed by modifying the chemical composition.
Technical Paper

Methodology & Experimental Study to Reduce Steering Effort and Improve Directional Stability in Three Wheeled Vehicles

2021-09-22
2021-26-0083
With an intense competitive automotive environment, it becomes imperative for any OEM to launch their products into the market in a short span of time & with a ‘First Time Right’ approach. Within the current scenario in the Automotive Industry, the selection of optimum set of hard points and wheel geometry often becomes an iterative or a trial-and-error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Through this paper, an attempt has been made to develop a methodology for deciding wheel geometry parameters (covered in the later section of this paper like Caster, Camber, Mechanical trail, etc.) [1, 2, 3, 4] for a three wheeled vehicle as a First Time Right (FTR) approach to cut down on conventional, expensive & time-consuming iterative approach.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

Evaluation of Accurate Tire Models for Vehicle Handling and Ride Comfort Simulations

2021-04-06
2021-01-0935
There is a growing need for the accurate Computer Aided Engineering (CAE) models for vehicle performance evaluation. The reduced product development time and complexity of the vehicle evaluation demands accurate prediction with CAE models. Vehicle dynamics performance evaluation is very critical in vehicle development process, which require very accurate vehicle and tire models. The tire characteristics are represented as mathematical, physics based and empirical models. There are different types of tire models exist like Fiala, PAC, SWIFT and FTire etc, which can be used for vehicle handling, ride and steering performance evaluation. There is a need to study and understand these tire models before applying to specific vehicle dynamic performance. There is a challenge to get the tire models as tire modeling require lot of tests and time consuming.
Technical Paper

Methodology Development for Multibody Simulation to Understand Shift Shock Behaviour

2021-04-06
2021-01-0714
One of the critical challenges for transmission design is to predict the gear shift dynamics accurately and to ensure smooth gear shift quality for different driver behaviors while shifting. This calls for detailed understanding of the RWUPs. Through prototype testing, understanding the influence of different parameters is costly and time consuming. Also, the testing does not provide necessary visualization of exact physics and the identification of issues is difficult. One of such typical concerns is shift shock while shifting the gear. Sudden gear engagement or disengagement leads to impact torque in drivetrain during shifting of gears, which in turn results in winding and unwinding of powertrain due to vehicle Inertia. This induces noise and vibration that affects driver comfort. The paper presents, the methodology to frontload prediction of dynamics of gear shifting that leads to shift shock behavior.
Technical Paper

Front Loading Vehicle Dynamics Requirements during Basic Architecture Definition Using Virtual Simulation

2021-04-06
2021-01-0968
A critical requirement for product design and development is meeting vehicle dynamic performance. Customers changing needs puts tremendous pressure on automotive businesses to launch new vehicles within short durations of time. This makes it mandatory to have a wide-ranging virtual simulation and vigorous validation process to provide best in class ride and handling performance of vehicles. Physical testing of prototypes is the most time-consuming activity, so there is a need of front loading to substitute these requirements at the initial stage of the development cycle. This paper summarizes the overall process for front loading vehicle dynamics requirements during basic architecture definition using virtual simulation. Basic dimensions, CG, weight distribution and steer angle of the new vehicle are derived using concept calculations based on benchmark vehicles. Vehicle dynamics trials are then done for the benchmark vehicles.
Technical Paper

A Unique Methodology to Evaluate the Structural Robustness of a Dual-Mass Flywheel under Real-World Usage Conditions

2020-09-25
2020-28-0475
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMFs are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the structural robustness of the DMF. In the present work, a new methodology is developed to evaluate the robustness of a DMF fitted in a compact sports utility vehicle (SUV) with rear-wheel drive architecture. The abuse conditions (mis-gear, sudden braking, etc) in the real-world usage could lead to a sudden engine stall leading to an abnormally high angular deceleration of the driveline components. The higher rate of deceleration coupled with the higher rotational moment of inertia of the systems might end up in introducing a significantly high impact torque on the DMF.
Journal Article

Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation

2019-11-21
2019-28-2397
Objective metrics for performance evaluation of ride, handling and steering are required to compare, validate and optimize dynamic behavior of vehicles. Some of these objective metrics are recommended and defined by International Organization for Standardization (ISO) and Society of Automotive Engineers (SAE), which involve data processing, statistical analysis and complex mathematical operations on acquired data through simulation or experimental testing. Due to the complexity of operations and volume of data, evaluation is often time consuming and tedious. Process automation using existing tools such as MS Excel, nCode, Siemens LMS, etc. includes several limitations and challenges, which make it cumbersome to implement. This work is about development of a centralized platform for quantification, visualization and comparison of ride, handling and steering performance metrics obtained from testing and simulation data as per relevant ISO standards.
X