Refine Your Search

Topic

Author

Search Results

Technical Paper

A Universal Steering Grommet Design Approach to Enhance the Passenger Cabin NVH Performance

2024-01-16
2024-26-0202
As a car OEM, we continuously strive to set the bar for competitors with every product. Consumer travel experiences are enhanced by increasing passenger cabin silence. There is only one steering system opening in the firewall panel, which is used for allowing intermediate shaft's fitment on the pinion shaft of the steering gear. The steering grommet is the sole component that covers the firewall cut-out without disrupting steering operations, which has a substantial impact on the NVH performance of the vehicle. It is typically used in cars to eliminate engine noise and dust entering to passenger compartment. The part is assembled inside the vehicle where the steering intermediate shaft passing through BIW firewall panel. We use a bearing, plastic bush, or direct rubber interference design in the steering grommet to accommodate the rotational input the driver provides to turn the automobile.
Technical Paper

Foam and FRP Sheets Packaging for Headliner Stiffness at Curtain Airbag Area

2024-01-16
2024-26-0008
As we all know, automotive headliners are an essential component of any car’s interior as they cover all the internal components and provide a clean and finished look. Headliners not only increase the aesthetic appeal of a car’s interior, but also acts as an insulation and sound absorption source. As per the latest Government norms, Curtain Airbag (henceforth called as CAB) has been made mandatory and this change calls for the corresponding changes in the Headliner packaging of all passenger vehicles. In general, curtain air-bag deployment calls for a twist open of Headliner at lateral sides (a portion below Hinge-line) during the deployment. This enables the inflated airbag to flow inside the passenger cabin to protect the passenger from any injury. Conventionally no components are packaged below the hinge-line area of headliner to avoid obstruction for CAB deployment and any part fly-off concerns.
Journal Article

Polypropylene Composite Material for Light Weight Fuel Tank Protection Shield

2022-03-29
2022-01-0336
The fuel tank shield provides a protective boundary between the fuel tank and vehicle driveline in the event of a high-speed crash. Hence, it is important from the safety standpoint. The part must be carefully engineered to meet the challenging requirements in terms of stiffness, deflection, toughness, dimensional stability and thermal stability. In this paper, long glass fibre filled polypropylene material compound was selected and developed to meet the mentioned requirements for this part with significant mass reduction over other materials. The combination of material, optimized part and tool design led to weight savings and considerable cost reduction. This is a ready to mold material used in injection molding process. This long glass fibre reinforced polypropylene compound has been explored for thin wall protection shield with wall thickness of 2.5 mm.
Journal Article

Ultra Flow, High Stiffness Polypropylene Material for Light Weight Exterior Trim Panels

2022-03-29
2022-01-0332
Light weighting is an effective strategy in increasing energy efficiency in the automotive industry. In this paper, mass reduction with cost benefit was targeted in an exterior trim panel. Polypropylene copolymer (PPCP) compound was developed for a large exterior trim panel (1400 X 700mm) having an integrated grill mesh. The part had challenging requirements in terms of slow speed impact, structural durability, dimensional stability, aesthetics, thermal ageing resistance, cold impact resistance, scratch resistance and weathering resistance. By having ultra-high flow behavior, optimum tensile strength, modulus, impact strength and thermal properties, the PPCP compound met the requirements for a thin wall exterior trim panel with a thickness of 2.6mm. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analyzed by using mold flow analysis.
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Technical Paper

Impact of Chemical Blowing Agent on Polypropylene Properties

2021-10-01
2021-28-0203
Weight reduction in automotive applications have led to the processing of thermoplastic polymers by foam injection molding. The density of the foamed polymer can be reduced up to 20%. Whilst, work has been reported on the weight reduction of the foamed polymer by using different types of blowing agent technologies, there has been limited studies in the areas of the sound transmission loss and sound attenuation properties of these materials. The present study is intended to understand the effect of chemical blowing agent (CBA) on the properties of polypropylene. The molded specimens were characterized using density, Differential scanning colorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infra-red spectroscopy (FT-IR) and sound transmission loss (STL) measurements. Specimens were also tested for tensile properties, flexural properties, Izod impact strength and Heat deflection temperature (HDT) as per standard test protocol.
Technical Paper

Frictional Power Loss Distribution of Automotive Axles - Experimental Evaluation and Analysis

2021-09-22
2021-26-0483
The given paper presents the main elements of frictional power loss distribution in an automotive axle for passenger car. For reference two different axles were compared of two different sizes to understand the impact of size and ratio of gear and bearings on power loss characteristics. It was observed that ~50% of total axle power loss is because of pinion head-tail bearing and its seals, which is very significant. Roughly 30% of total power loss is contributed by pinion-ring gear pair and differential bearings and remaining ~20% by wheel end bearing and seals. With this study the automotive companies can take note of the area where they need to focus more to reduce their CO2 emissions to meet the stringent BS6, CAFÉ and RDE emission norms.
Technical Paper

Mold in Color Pianno Black PC Material for Automotive Exterior Application

2021-09-22
2021-26-0242
Aesthetics contribute significantly to the customer’s buying decision of an automobile. This is traditionally achieved through painting. Sustainability and cost challenges have led automakers to look at substituting painting through molded-in color polymers in decorative bezels like pillar appliques. These appliques and bezels have a unique mix of material requirements that include color tone, gloss, stiffness, scratch resistance and weathering. Polycarbonates are an interesting class of polymers that has the potential to meet these challenging requirements. This paper reports the work done in evaluating a polycarbonate compound in piano black shade to meet the functional and aesthetic requirements. The results prove that the material can substitute painting thereby resulting in significant cost savings. This is a ready to mold material used in injection molding process. This modified polycarbonate material has been explored for thin wall appliques and bezels with thickness of 2.7 mm.
Technical Paper

Characterization and Durability of Mold-In-Color Engineering Plastics

2019-11-21
2019-28-2542
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC-ABS used in automotive passenger vehicles. Comparative analysis was conducted before and after weathering exposure at defined intervals by using Fourier Transform infra-red spectrometer (FTIR), differential scanning colorimetry (DSC), universal testing machine (UTM), Izod impact tester and microscope to understand the impact on their chemical and mechanical properties.
Technical Paper

Next Generation Power Distribution Unit in Wiring Harness

2019-11-21
2019-28-2571
With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. The concept of next generation power distribution unit in automobiles is achieved using miniaturization of its sub-components which involves replacing the mini fuses and JCASE fuses with LP mini and LP JCASE fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost. Furthermore, to address stringent weight and space targets, LP mini fuses and LP JCASE fuses were further replaced with micro-2 fuse and M-case fuse respectively.
Technical Paper

High Durable PU Metallic Monocoat System for Tractor Sheet Metal Application

2019-11-21
2019-28-2541
In sheet metal painting for various applications like tractor and automobiles, most attractive coating is metallic paints. It is widely applied using 3 coat 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production through put time and lower productivity in manufacturing process. During various brainstorming and sustainability initiatives, paint application process was identified to reduce burden on environment and save energy. Various other industry benchmarking and field performance requirement studies helped to identify critical quality parameters. There was collaboration with supplier to develop monocoat system without compromising any performance and aesthetic properties. This resulted in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
Technical Paper

Aerodynamic Drag Reduction of an Intercity Bus through Surface Modifications - A Numerical Simulation

2019-10-11
2019-28-0045
The maximum power produced by the Engine is utilized in overcoming the Aerodynamic resistance while the remaining has been used to overcome rolling and climbing resistance. Increasing emission and performance demands paves way for advanced technologies to improve fuel efficiency. One such way of increasing the fuel efficiency is to reduce the aerodynamic drag of the vehicle. Buses emerged as the common choice of transport for people in India. By improving the aerodynamic drag of the Buses, the diesel consumption of a vehicle can be reduced by nearly about 10% without any upgradation of the existing engine. Though 60 to 70 % of pressure loads act on the frontal surface area of the buses, the most common techniques of reducing the drag in buses includes streamlining of the surfaces, minimizing underbody losses, reduced frontal area, pressure difference between the front & rear area and minimizing of flow separation & wake regions.
Technical Paper

Design for Adaptive Rear Floor Carpet for Changing Shapes and Complex Architecture

2019-10-11
2019-28-0004
With increasing road traffic and pollution, it becomes responsibility for all OEM to increase fuel efficiency and reduce carbon footprint. Most effective way to do so is to reduce weight of the vehicle and more use of ecofriendly recyclable material. With this objective we have come up with Light weight, cost effective sustainable design solution for Injection moulded RQT (Rear quarter trim). It is an interior plastic component mounted in the III row of the vehicle. This is required to ensure inside enhanced aesthetic look of the vehicle and comfort for 3rd row passengers. Conventionally RQT of vehicle with 3rd row seating is made using plastic material (PP TD 20). With the use of plastic moulded RQT there is a significant weight addition of around 6 kg per vehicle along with reduced cabin space, huge investment and development time impact.
Technical Paper

Understanding the Stick Slip Behavior of Plastics and Target Setting: An OEM Perspective

2019-06-05
2019-01-1465
Automotive OEMs are aggressively using different materials for interiors due to value proposition and variety of options available for customers in market. Excessive usage of different grade plastics with zero gap philosophy can cause stick slip effect leading to squeak noise. Even though systems and subsystems are designed using best practices of structural design and manufacturing tolerances, extreme environmental conditions can induce contacts leading to squeak noise. Appropriate selection of interface material pairs can minimize the possibilities of squeak conditions. Stick-slip behavior of different plastics is discussed in the present study, along with critical parameters during material compatibility testing in a tribological test stand. Friction coefficient of different material pairs for a defined normal load and sliding velocity are analyzed for patterns to recognize squeaks versus time.
Technical Paper

Polypropylene Copolymer Automotive Canopy Plastic Structure Application

2018-04-03
2018-01-0157
This paper describes modified polypropylene copolymer (PPCP) material for canopy plastic structure in a modular commercial passenger vehicle. This compounded PPCP material has optimized flow behavior, tensile strength, modulus, impact strength, and thermal properties to meet the functional requirements. Material described in this paper is a PPCP compound reinforced with glass fiber and mica filler. The application described in this paper is a canopy plastic structure, which is a structural exterior plastic part. Canopy plastic structure acts as a structural frame to hold vinyl canopy in both sides and tail gate of vehicle. In this paper, PPCP has been explored for canopy plastic structure part against conventional polyamides. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analyzed by using mold flow analysis.
Technical Paper

Prediction of Hub Load on Power Steering Pump Using Dynamic Simulation and Experimental Measurement

2017-03-28
2017-01-0416
New trend in steering system such as EPS is coming up, but still hydraulic power steering system is more prevalent in today’s vehicles. Power steering pump is a vital component of hydraulic power steering system. Failure of steering pump can lead to loss of power assistance. Prediction of hub load on pump shaft is an important design input for pump manufacturer. Higher hub loads than the actual designed load of pump bearing may lead to seizure of pump. Pump manufacturer has safe limits for hub load. Simulations can assist for optimization of belt layout and placement of accessories to reduce the hub load. Lower hub load can have direct effect on improvement of pump durability. This paper deals with dynamic simulation of belt drive system in MSC.ADAMS as well as vehicle level measurement of hub load on power steering pump.
Technical Paper

Silent Block Bush Design and Optimization for Pick-Up Truck Leaf Spring

2017-03-28
2017-01-0455
Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
Technical Paper

Experimental Measurement to Predict Power Steering Pump Hub Load with Implementation of Belt Driven Starter Generator

2017-01-10
2017-26-0149
The present scenario in automobile industry is formed on developing smart vehicles by introducing various feature towards fuel efficient, low emission, weight reduction, and advance safety feature with hybrid and micro-hybrid vehicles. One such feature gaining more popularity is the Belt Driven Starter Generator [1] for its contribution towards fuel efficiency, emission reduction [2], weight reduction and convenient packaging with engine/electrical interface. However this invention puts challenge of integration and increase in loading to various system like power steering pump and crank shaft pulley, as all these systems are interlinked with a common belt. In this interface links we observed the steering pump hub under risk of structural failure due to additional load to support Belt Driven Starter Generator. Failure to identify safe limits of hub load can affect safe vehicle operation [3].
Technical Paper

Green Drive - A Holistic Approach Towards Fuel Efficient Driving

2017-01-10
2017-26-0078
In the past few decades, improvement on fuel efficient technologies have progressed rapidly, whereas little emphasis is being made on how the vehicle should be driven. Driving habits significantly influences fuel consumption and poor driving habits leads to increased fuel consumption. In this paper a new system called “Green Drive” is being presented wherein driving habits are closely monitored, evaluated and details are systematically presented to the user. Green Drive system monitors key driving parameters like speed, gear selection, acceleration, unwanted engine idling periods, aggressive braking and clutch override and presents an ecoscore on the infotainment system which is reflection of users driving behavior. The system also offers guidance on the scope for improving driving habits to achieve better ecoscore and hence reduced fuel consumption.
Technical Paper

Vehicle Sway Prediction in Hydraulic Circuit Failed Condition on 4 Wheeled Vehicle with ‘X’ Split Brake Configuration

2017-01-10
2017-26-0344
A 4 wheeled vehicle with X-split brake configuration, in hydraulic circuit failed condition will have a behavior of induced sway due to braking force variation in the front and rear diagonally. With increasing vehicle speed, engine power & customer expectations, the situation becomes more critical and challenging in designing a brake system which caters in meeting the homologation requirement at an expense of vehicle sway within controllable limits of driver / customer. This paper proposes a novel approach & methodology to overcome the above situation by predicting the effect of brake force distribution variation on the vehicle swaying behavior during circuit failed braking condition. This study will quantify vehicle sway, caused due to imbalance in brake force distribution during a circuit failed braking event on X Split configuration vehicles.
X