Refine Your Search

Topic

Author

Search Results

Technical Paper

Miniaturized and sleek protective device

2019-11-21
2019-28-2535
A miniaturized and sleek protective device M. Priyanka, Mahindra&Mahindra, India D. Boobala Krishnan*, Mahindra&Mahindra, India T.Vijayan, Mahindra& Mahindra, India Keywords-Fuse, Lightweight. Research and/or Engineering Questions/Objective: Now-a-days there is lot of advancement coming in automobiles. Earlier the electronics were used in engine and engine compartment areas. Now all hydraulics and transmission have been operated by electronics. The role of electronics like sensors, actuators increasing day by day for lifting and moving operations. With increase in electronics circuit, there is complex in wiring harness and packaging space for fuse box is premium Limitations: Limitations of placing other devices. Occupy more space and weight in the vehicle. Packing constraint due to vibration and thermal management issues. Methodology: Two different fuse of same rating can be given in one fuse and we can reduce the wire size.
Technical Paper

SMART HONKING

2019-11-21
2019-28-2463
Smart Honking Keywords-Safety, Connectivity, GPS M. Priyanka, Mahindra&Mahindra, India Sai Himaja Nadimpalli, Mahindra&Mahindra,India Keywords-Honking , Infotainment , GPS Research and/or Engineering Questions/Objective: In India unnecessary vehicular honking is the main reason for noise pollution. The problem is worst at traffic signals where drivers start honking without waiting for the signal to turn green or for traffic to move. Drivers show no respect to the law that prohibits the use of horn at traffic signals and other silent zones such as areas near hospitals, schools, religious places and residential areas. Vehicular honking in cities has reached at an alarming level and contributes approximately 70% of the noise pollution in our environment.The unwanted sound can affect human health and behavior, causing annoyance, depression, hypertension, stress, hearing loss, memory loss and panic attacks.
Technical Paper

Effect of Gasoline-Ethanol blends on GDI engine to reduce cost of vehicle ownership

2019-11-21
2019-28-2379
A major challenge for combustion development is to optimize the engine for improved fuel economy, reduce greenhouse gases. Stringent CAFÉ and emission norms require the customer to pay higher capital on vehicles. To offset the cost of ownership- cheaper and alternative energy sources are being explored. Ethanol blend with regular Gasoline and CNG are such alternative fuels. The study was carried on turbo-charged gasoline direct injection engine. The effect of ethanol on engine and vehicle performance is estimated and simulated numerically. The work is split into three stages: first the base 1D engine performance model was calibrated to match the experimental data. In parallel, vehicle level Simulink model was built and calibrated to match the NEDC cycle performance. Second, the thermal efficiency of the ethanol blend is calculated as a linear function of theoretical Otto cycle efficiency.
Technical Paper

NEXT GENERATION POWER DISTRIBUTION UNIT IN WIRING HARNESS

2019-11-21
2019-28-2571
Keywords – Miniaturization, Low Profile (LP) Relays, Low Profile (LP) Fuses, Fuse box, Wiring Harness Research and/or Engineering Questions/Objective With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. Methodology Miniaturization involves replacing the mini fuses and J-case fuses with LP mini and LP J-case fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost.
Technical Paper

Advanced Mathematical Modelling for Glass Surface Optimization with PSO

2019-10-11
2019-28-0104
In automotive door engineering, fitting the side door glass surface from styling into the cylinder or torus is the basic requirement. Optimization is required to do this, which requires a solver which could be efficacious for best surface fitting. This paper propounds a methodology which could be used for fitting a side door glass surface from styling into the cylinder or torus. The method will significantly help in developing the required surface and can successfully eliminate the cumbersome manual calibrations. The mathematical model mentioned is a novel approach based on “Particle Swarm Optimization” (“PSO” will be used to represent in the paper) towards surface optimization technique. VB script is used to make it applicable in CATIA but could be easily applied in any other programming language like python, java etc. Usually the surface fitting problems deals with the initial guess of the required surface and then its further optimization.
Technical Paper

Optimization of IP Duct Vane Articulation for Improved Cabin Airflow Directivity

2019-10-11
2019-28-0132
The air velocity achieved at driver and passenger aim point is one of the key parameters to evaluate the automotive air-conditioning system performance. The design of duct, vent and vanes has a major contribution in the cabin air flow directivity. However, visual appearance of vent and vane receives higher priority in design because of market demand than their performance. More iterations are carried out to finalize the HVAC duct assembly until the target velocity is achieved. The objective of this study is to develop an automated process for vane articulation study along with predicting the optimized velocity at driver and passengers. The automated simulation of vane articulation study is carried out using STAR-CCM+ and SHERPA optimization algorithm which is available in HEEDS tool. The minimum and maximum vane angle are defined as parameters and face level velocity is defined as response.
Technical Paper

Design of Light Weight Hydraulic Connecting Rod for Agricultural Tractor

2019-10-11
2019-28-0016
Hydraulic power train assembly of an agricultural tractor is meant to controls the position and draft of the implement depending upon the type of crop, farming stage, implement type and soil conditions. These variations induce extreme range of loads on the hydraulic system, thus making it challenging to design these components. Hydraulic connecting rod is critical component of hydraulic power train assembly. Standards like IS12224, IS4468 governs the design of hydraulic power train components which regulates the test method for hydraulic power and lift capacity of the tractor. In this paper, a virtual simulation process has been established to design a hydraulic connecting rod to meet the requirements. The hydraulic connecting rod basically functions as a short load transferring link, which is subjected to the operating hydraulic pressure of the hydraulic lifting mechanism. The current circular connecting rod is higher in weight and cost.
Technical Paper

Implementation and Experimentation of Effective Clog Removal Method in Tractors for Enhanced Condenser Life and Air Conditioning Performance During Reaper Application

2019-10-11
2019-28-0015
Tractors in the field are exposed to adverse operating conditions and are surrounded by dust and dirt. The tiny, thin and sharp broken straw and husks surround the system in reaper operation. The tractors which are equipped with air conditioning system tend to show detrimental effects in cooling performance. The compressor trips frequently by excess pressure developed in the system due to condenser clogging and hence cooling performance is reduced considerably. The air conditioning performance reduces due to the clogged condenser located on the top roof compartment of operator’s cabin, which is better design than keeping in front of radiator where clogging happens every hour and customer need to stop the tractor to clean it with specific blower.
Technical Paper

Develop the Methodology Using DOE Approach to Improve Steering Return Ability of a Vehicle through Virtual Simulation

2019-10-11
2019-28-0012
In driving, Steering is the input motion to the vehicle. The driver uses steering input to change the direction of the vehicle. During Parking or U turn bends the Steering is locked and later released to follow the desired path. Steering return ability is defined as the ratio of difference between steering wheel position at lock condition and steering wheel angle after 3 seconds of release to the steering wheel angle at lock condition. Having proper steering return ability characteristics has an important effect on vehicle steering characteristics. In this study, a full vehicle ADAMS model is prepared, and virtual steering return ability have been simulated in ADAMS/CAR for a Pickup truck vehicle. Simulated responses in the steering wheel angle have been validated by comparison with measurements. A Design of Experiment study is setup and Iterations are carried out to find the effect of Hard points and friction parameters.
Technical Paper

Aerodynamic Drag Reduction of an Intercity Bus through Surface Modifications - A Numerical Simulation

2019-10-11
2019-28-0045
The maximum power produced by the Engine is utilized in overcoming the Aerodynamic resistance while the remaining has been used to overcome rolling and climbing resistance. Increasing emission and performance demands paves way for advanced technologies to improve fuel efficiency. One such way of increasing the fuel efficiency is to reduce the aerodynamic drag of the vehicle. Buses emerged as the common choice of transport for people in India. By improving the aerodynamic drag of the Buses, the diesel consumption of a vehicle can be reduced by nearly about 10% without any upgradation of the existing engine. Though 60 to 70 % of pressure loads act on the frontal surface area of the buses, the most common techniques of reducing the drag in buses includes streamlining of the surfaces, minimizing underbody losses, reduced frontal area, pressure difference between the front & rear area and minimizing of flow separation & wake regions.
Technical Paper

Fuel Efficiency Improvement in Automatic Transmissions by Lockup Slip Methodology

2019-10-11
2019-28-0029
Increasing of automatic transmissions in passenger cars is based on pleasure of driving, smooth acceleration and easy operation makes the customer satisfaction. Challenges beyond 2020 is BS VI emission norms in India - a very tough goals on CO2& NOx reduction in Gasoline & Diesel vehicles. But its setback in lower fuel economy. To support & enhance fuel economy in Automatic transmissions as part of drivetrain technologies, this article discusses about the power losses in torque converters and experiments on the actual Automatic transmission (AT) vehicle on-road to understand the real city driving behavior in the aspects of gear utilization & gas pedal utilization throughout the entire traffic conditions. With that data research, slip area and slipping conditions is determined & clutch slip control is enabled at area in torque converter by ensuring that NVH parameters are not affected.
Technical Paper

Development of a Standalone Application in MATLAB to Generate Brake Performance Data

2019-04-02
2019-01-0513
Predicting the brake performance and characteristics is a crucial task in the vehicle development activity. Performance prediction is a challenge because of the involvement of various parts in the brake assembly like booster, master cylinder, calipers, disc and drum brakes. Determination of these characteristics through vehicle level tests requires a lot of time and money. This performance prediction is achieved by theoretical calculations involving vehicle dynamics. The final output must satisfy the regulations. This project involves the creation of a standalone application using MATLAB to predict the various brake performances such as: booster characteristics, adhesion curves, deceleration and pedal effort curves, behavior of brakes during brake and booster failed conditions and braking force diagrams based on the given user inputs. Previously, MS Excel and an application developed in the TK Solver environment was used to predict the brake performance curves.
Technical Paper

Optimization of EGR Mixer to Minimize Thermal Hot Spot on Plastic Duct & Soot Deposition on Throttle Valve Using CFD Simulation

2019-01-09
2019-26-0286
In recent time, with inception of BS VI emission regulation with more focus on fuel economy and emission, many engine parts which were conventionally made from metal are getting replaced with plastic components for reducing weight to attain better fuel economy. EGR is commonly used technique to reduce emissions in diesel engine along with after treatment devices. EGR reduces peak combustion temperature inside the combustion chamber thereby reducing NOx. EGR is bypassed from the exhaust manifold, cooled down in EGR cooler and mixed with intake air at upstream of the intake manifold. Throttle valve is used for controlling the charged air flow to cylinders for different vehicle operating conditions. With compact engine layout EGR mixer are often located near to throttle valve thereby increasing the possibility of soot deposition on throttle valve.
Technical Paper

Insight into Effect of Blow-By Oil Mist Deposits on Turbocharger Performance Deterioration in a Diesel Engine

2019-01-09
2019-26-0340
Stringent emission legislations increase the significance of emission reduction through crankcase ventilation systems in combustion engines. Oil mist separation efficiency of the CCV systems directly impacts the emissions of diesel engines. The CCV systems retain the oil with soot and carbon particles and return them to the oil sump. CCV thus reduces engine oil consumption and emissions. Contemporary technology enables usage of highly efficient CCV systems. However, the filtration efficiency of the CCV system is limited to keep crankcase pressure under limits. Oil particles which escape from CCV system result in soot deposit on turbocharger compressor leading to deterioration of turbocharger performance. Performance variation of turbocharger has a substantial impact on engine emissions. Therefore, it is essential to understand the effect of CCV system design and different engine operating conditions which accelerate the Oil mist deposits on turbocharger Compressor.
Technical Paper

Estimation of Clutch Life for Manual Transmission Vehicle Through Thermal Modeling of Clutch Housing and Clutch Facing

2017-10-08
2017-01-2439
Poor clutch life is a major issue for some light commercial vehicle models. Clutch overheating is the primary cause for clutch failure. Some of the reasons include inappropriate gear selection by the driver, poor low-end dynamic torque availability from an engine, heavy stop and go traffic, vehicle overloading resulting in excessive clutch slippage especially in gradients, riding of the clutch pedal by the customer etc. These situations lead to a high thermal energy dissipation at the clutch, increasing clutch wear and in extreme conditions leading to not only poor shift quality but also eventual clutch failure. Unfortunately, it is not practical to monitor clutch temperature in a production vehicle due to high costs or technical challenges involved. This paper describes 1-D thermal modeling of single plate dry clutch typically used in passenger car/truck and bus applications. The objective of simulation is to estimate the temperature rise on the clutch facing and clutch housing.
Technical Paper

Application of Reliability Technique for Developing a Test Methodology to Validate the Engine Mounted Components for Off-Road Applications under Vibration

2017-09-29
2017-01-7004
Vibrational fatigue is a metal fatigue caused by the forced vibrations which are purely random in nature. The phenomenon is predominantly important for the components/systems which are subjected to extreme vibration during its operation. In a vehicle, an engine is the main source of vibration. The vibrational fatigue, therefore, plays a key role in the deterioration of engine mounted components. Multiple test standards and methodologies are available for validating engine mounted parts of an automobile. These might not be appropriate in the case of an off- road vehicle as the vibrational exposure of engine mounted components of an off-road vehicle is entirely different. In the case of an off-road vehicle, the engine mounted components are subjected to a comparatively higher level of vibration for a longer duration of time as compared to the passenger cars.
Technical Paper

Reduction of Driveline Boom Noise and Vibration of 40 Seat Bus through Structural Optimization

2017-07-10
2017-28-1926
In today’s automotive scenario, noise vibration and harshness (NVH) has become a synonym for quality perception. This paper evaluates the problem of vibration and noise experienced in M2 category 40 seat bus and suggests the counter measures. Severe vibration is experienced on the bus floor, predominantly towards rear part of the bus. Vibration along with acoustic boom occurs prominently in 4th gear wide open throttle operating condition between 1300-1600 rpm of the engine. This paper focuses on reducing NVH levels by working on the transfer path with little modifications on power-train. Preliminary torsional measurements conducted on powertrain indicated high torsional excitation in the driveline during the problematic rpm zone. Further, Operational Deflection Shape (ODS) analysis revealed that the transfer path to the cabin is rear differential unit and suspension links. The dominant frequencies were identified along the transfer path and suitable modifications were done.
Technical Paper

Analysis and Elimination of Howling Noise in Compact Utility Vehicle

2017-07-10
2017-28-1922
NVH is becoming one of the major factor for customer selection of vehicle along with parameters like fuel economy and drivability. One of the major NVH challenges is to have a vehicle with aggressive drivability and at the same time with acceptable noise and vibration levels. This paper focuses on the compact utility vehicle where the howling noise is occurring at higher rpm of the engine. The vehicle is powered by three cylinder turbocharged diesel engine. The noise levels were higher above 2500 rpm due to the presence of structural resonance. Operational deflection shapes (ODS) and Transfer path analysis (TPA) analysis was done on entire vehicle and powertrain to find out the major reason for howling noise at higher engine rpm. It is observed that the major contribution for noise at higher rpm is due to modal coupling between powertrain, half shaft and vehicle sub frame.
Journal Article

Acoustic Analysis of a Compact Muffler for Automotive Application

2017-06-17
2017-01-9550
A production muffler of a 2.2 liter compression ignition engine is analyzed using plane wave (Transfer Matrix) method. The objective is to show the usefulness of plane wave models to analyze the acoustic performance (Transmission Loss, TL) of a compact hybrid muffler (made up of reactive and dissipative elements). The muffler consists of three chambers, two of which are acoustically short in the axial direction. The chambers are separated by an impervious baffle on the upstream side and a perforated plate on the downstream side. The first chamber is a Concentric Tube Resonator (CTR). The second chamber consists of an extended inlet and a flow reversal 180-degree curved outlet duct. The acoustic cavity in the third chamber is coupled with the second chamber through the acoustic impedances of the end plate and the perforated plate.
Technical Paper

Acoustic Analysis of a Tractor Muffler

2017-06-05
2017-01-1791
Parametric model of a production hybrid (made up of reactive and dissipative elements) muffler for tractor engine is developed to compute the acoustic Transmission Loss (TL). The objective is to simplify complex muffler acoustic simulations without any loss of accuracy, robustness and usability so that it is accessible to all product development engineers and designers. The parametric model is a 3D Finite Element Method (FEM) based built in COMSOL model builder which is then converted into a user-friendly application (App) using COMSOL App builder. The uniqueness of the App lies in its ability to handle not only wide range of parametric variations but also variations in the physics and boundary conditions. This enables designers to explore various design options in the early design phase without the need to have deep expertise in a specific simulation tool nor in numerical acoustic modeling.
X