Refine Your Search

Topic

Author

Search Results

Technical Paper

Advanced analytical methods for the study of lubricant-derived ash and associated impacts on engine aftertreatment components

2019-12-19
2019-01-2293
Catalytic and non-catalytic engine aftertreatment components, such as the diesel oxidation catalyst (DOC), selective catalytic reduction on filter (SCRF), the gasoline particulate filter (GPF) and the diesel particulate filter (DPF) are complex, multifunctional emissions control technologies that are robustly designed for extended use in harsh automotive exhaust environments. Over the useful component lifetime, lubricant-derived inorganic and incombustible ash accumulates in and/or on the surface of the aforementioned aftertreatment components, resulting in degraded performance and other potential problems. In order to better understand effects of ash in such components, a multiscale analytical approach is necessary, requiring a variety of experimental tools.
Technical Paper

Direct Measurement of Aftertreatment System Stored Water Levels for Improved Dew Point Management Using Radio Frequency Sensing

2019-04-02
2019-01-0739
Reducing cold-start emissions to meet increasingly stringent emissions limits requires fast activation of exhaust system sensors and aftertreatment control strategies. One factor delaying the activation time of current exhaust sensors, such as NOx and particulate matter (PM) sensors, is the need to protect these sensors from water present in the exhaust system. Exposure of the ceramic sensing element to water droplets can lead to thermal shock and failure of the sensor. In order to prevent such failures, various algorithms are employed to estimate the dew point of the exhaust gas and determine when the exhaust system is sufficiently dry to enable safe sensor operation. In contrast to these indirect, model-based approaches, this study utilized radio frequency (RF) sensors typically applied to monitor soot loading levels in diesel and gasoline particulate filters, to provide a direct measurement of stored water levels on the ceramic filter elements themselves.
Technical Paper

Phenomenological Investigations of Mid-Channel Ash Deposit Formation and Characteristics in Diesel Particulate Filters

2019-04-02
2019-01-0973
Accumulation of lubricant and fuel derived ash in the diesel particulate filter (DPF) during vehicle operation results in a significant increase of pressure drop across the after-treatment system leading to loss of fuel economy and reduced soot storage capacity over time. Under certain operating conditions, the accumulated ash and/or soot cake layer can collapse resulting in ash deposits upstream from the typical ash plug section, henceforth termed mid-channel ash deposits. In addition, ash particles can bond (either physically or chemically) with neighboring particles resulting in formation of bridges across the channels that effectively block access to the remainder of the channel for the incoming exhaust gas stream. This phenomenon creates serious long-term durability issues for the DPF, which often must be replaced. Mid-channel deposits and ash bridges are extremely difficult to remove from the channels as they often sinter to the substrate.
Technical Paper

Experiments and Analyses on Stability/Mid-Channel Collapse of Ash-Deposit Wall Layers and Pre-Mature Clogging of Diesel Particulate Filters

2019-04-02
2019-01-0972
The conventional concept of soot and ash wall deposits (i.e. cake-layers) gradually building up along the channels of a ceramic honeycomb and then periodically or continuously being swept downstream toward the end-plugs of the channels may not always occur in practice. When deposits irregularly form on or detach from the walls, causing premature clogging usually around the mid-sections of the channels (also known as Mid-Channel Collapse), and the particulate filter is prone to experiencing significantly elevated back pressure, resulting in the need for earlier repair or replacement than desired. Here we describe related experiments that were performed, accompanied by analysis and simulation, in order to investigate the factors that contribute to the patterns of wall deposits that form-particularly of ash-and the effects of these irregular patterns.
Journal Article

NOx Reduction Using a Dual-Stage Catalyst System with Intercooling in Vehicle Gasoline Engines under Real Driving Conditions

2018-04-03
2018-01-0335
Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is used in diesel-fueled mobile applications where urea is an added reducing agent. We show that the Ultera® dual-stage catalyst, with intercooling aftertreatment system, intrinsically performs the function of the SCR method in nominally stoichiometric gasoline vehicle engines without the need for an added reductant. We present that NOx is reduced during the low-temperature operation of the dual-stage system, benefiting from the typically periodic transient operation (acceleration and decelerations) with the associated swing in the air/fuel ratio (AFR) inherent in mobile applications, as commonly expected and observed in real driving. The primary objective of the dual-stage aftertreatment system is to remove non-methane organic gases (NMOG) and carbon monoxide (CO) slip from the vehicle’s three-way catalyst (TWC) by oxidizing these constituents in the second stage catalyst.
Journal Article

Potential of Negative Valve Overlap for Part-Load Efficiency Improvement in Gasoline Engines

2018-04-03
2018-01-0377
This article reports on the potential of negative valve overlap (NVO) for improving the net indicated thermal efficiency (η NIMEP) of gasoline engines during part load. Three fixed fuel flow rates, resulting in indicated mean effective pressures of up to 6 bar, were investigated. At low load, NVO significantly reduces the pumping loses during the gas exchange loop, achieving up to 7% improvement in indicated efficiency compared to the baseline. Similar efficiency improvements are achieved by positive valve overlap (PVO), with the disadvantage of worse combustion stability from a higher residual gas fraction (xr). As the load increases, achieving the wide-open throttle limit, the benefits of NVO for reducing the pumping losses diminish, while the blowdown losses from early exhaust valve opening (EVO) increase.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

2018-04-03
2018-01-1260
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Technical Paper

Developing Design Guidelines for an SCR Assembly Equipped for RF Sensing of NH3 Loading

2018-04-03
2018-01-1266
The Cu-zeolite (CuZ) SCR catalyst enables higher NOx conversion efficiency in part because it can store a significant amount of NH3. “NH3 storage control”, where diesel exhaust fluid (DEF) is dosed in accord with a target NH3 loading, is widely used with CuZ catalysts to achieve very high efficiency. The NH3 loading actually achieved on the catalyst is currently estimated through a stoichiometric calculation. With future high-capacity CuZ catalyst designs, it is likely that the accuracy of this NH3 loading estimate will become limiting for NOx conversion efficiency. Therefore, a direct measurement of NH3 loading is needed; RF sensing enables this. Relative to RF sensing of soot in a DPF (which is in commercial production), RF sensing of NH3 adsorbed on CuZ is more challenging. Therefore, more attention must be paid to the “microwave resonance cavity” created within the SCR assembly. The objective of this study was to develop design guidelines to enable and enhance RF sensing.
Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

2017-03-28
2017-01-0930
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
Journal Article

On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

2017-03-28
2017-01-0950
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Journal Article

Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations

2017-03-28
2017-01-0927
Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
Technical Paper

Lab Study of Urea Deposit Formation and Chemical Transformation Process of Diesel Aftertreatment System

2017-03-28
2017-01-0915
Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
Journal Article

Reduction of Cold-Start Emissions through Valve Timing in a GDI Engine

2016-04-05
2016-01-0827
This work examines the effect of valve timing during cold crank-start and cold fast-idle (1200 rpm, 2 bar NIMEP) on the emissions of hydrocarbons (HC) and particulate mass and number (PM/PN). Four different cam-phaser configurations are studied in detail: 1. Baseline stock valve timing. 2. Late intake opening/closing. 3. Early exhaust opening/closing. 4. Late intake phasing combined with early exhaust phasing. Delaying the intake valve opening improves the mixture formation process and results in more than 25% reduction of the HC and of the PM/PN emissions during cold crank-start. Early exhaust valve phasing results in a deterioration of the HC and PM/PN emissions performance during cold crank-start. Nevertheless, early exhaust valve phasing slightly improves the HC emissions and substantially reduces the particulate emissions at cold fast-idle.
Journal Article

Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

2016-04-05
2016-01-0942
The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
Technical Paper

Particulate Filter Soot Load Measurements using Radio Frequency Sensors and Potential for Improved Filter Management

2016-04-05
2016-01-0943
Efficient aftertreatment management requires accurate sensing of both particulate filter soot and ash levels for optimized feedback control. Currently a combination of pressure drop measurements and predictive models are used to indirectly estimate the loading state of the filter. Accurate determination of filter soot loading levels is challenging under certain operating conditions, particularly following partial regeneration events and at low flow rate (idle) conditions. This work applied radio frequency (RF)-based sensors to provide a direct measure of the particulate filter soot levels in situ. Direct measurements of the filter loading state enable advanced feedback controls to optimize the combined engine and aftertreatment system for improved DPF management. This study instrumented several cordierite and aluminum titanate diesel particulate filters with RF sensors. The systems were tested on a range of light- and heavy-duty applications, which included on- and off-road engines.
Technical Paper

The Effects of Mid-Channel Ash Plug on DPF Pressure Drop

2016-04-05
2016-01-0966
It has been observed that a certain percentage of diesel particulate filters (DPFs) from the field form mid-channel ash plugs both in light duty and heavy duty applications. As revealed in a post mortem study, some field samples have ash plugs of 3-10 cm length in the middle of DPF inlet channels, which can potentially reduce the inlet channel volume by more than 50%. As a result, the mid-channel ash plug reduces the effective filtration area and decreases the effective channel open width in the middle of the channel. This explains why these filters are reported as having large increases in pressure drop. Moreover, the mid-channel ash deposits reduce the DPF service life and render the filter cleaning process ineffective. In the present study, an open source CFD tool is applied to study the 3D flow crossing two representative inlet and outlet DPF channels where the inlet channels have mid-channel ash plugs.
Journal Article

Ash Accumulation and Impact on Sintered Metal Fiber Diesel Particulate Filters

2015-04-14
2015-01-1012
While metal fiber filters have successfully shown a high degree of particle retention functionality for various sizes of diesel engines with a low pressure drop and a relatively high filtration efficiency, little is known about the effects of lubricant-derived ash on the fiber filter systems. Sintered metal fiber filters (SMF-DPF), when used downstream from a diesel engine, effectively trap and oxidize diesel particulate matter via an electrically heated regeneration process where a specific voltage and current are applied to the sintered alloy fibers. In this manner the filter media essentially acts as a resistive heater to generate temperatures high enough to oxidize the carbonaceous particulate matter, which is typically in excess of 600°C.
Technical Paper

Modeling Study of Metal Fiber Diesel Particulate Filter Performance

2015-04-14
2015-01-1047
Sintered metal fiber (SMF) diesel particulate filters (DPF) has more than one order of magnitude lower pressure drop compared to a granular or reaction-born DPF of the same (clean) filtration efficiency. To better understand the filtration process and optimize the filter performance, metal fiber filter models are developed in this study. The major previous theoretical models for clean fibrous filter are summarized and compared with experimental data. Furthermore, a metal fiber DPF soot loading model, using similar concept developed in high efficiency particulate air (HEPA) filter modeling, is built to simulate filter soot loading performance. Compared with experimental results, the soot loading model has relatively good predictions of filter pressure drop and filtration efficiency.
Journal Article

Theoretical and Experimental Analysis of Ash Accumulation and Mobility in Ceramic Exhaust Particulate Filters and Potential for Improved Ash Management

2014-04-01
2014-01-1517
Ash accumulation in the channels of ceramic, honeycomb-type particulate filters is controlled by several key parameters, which are the focus of this study. Ultimately, it is the formation of ash deposits, their transport, and the manner in which the ash accumulates in the particulate filter, which determines the useful service life of the filter and its resulting impact on engine performance. Although significant variations in ash deposit properties and their spatial distribution within the filter channels have been reported, depending on the filter's application, understanding the key parameters and mechanisms, such as the effects of exhaust flow and temperature conditions, as well as the processes occurring during filter regeneration events (whether passive or active) are critical in developing improved filter ash management strategies.
Journal Article

Direct Measurements of Soot/Ash Affinity in the Diesel Particulate Filter by Atomic Force Microscopy and Implications for Ash Accumulation and DPF Degradation

2014-04-01
2014-01-1486
Inorganic engine lubricant additives, which have various specific, necessary functions such as anti-wear, leave the combustion chamber bound to soot particles (approximately ≤1% by mass) as ash [13], and accumulate in aftertreatment components. The diesel particulate filter (DPF) is especially susceptible to ash-related issues due to its wall-flow architecture which physically traps most of the soot and ash emissions. Accumulated lubricant-derived ash results in numerous problems including increased filter pressure drop and decreased catalytic functionality. While much progress has been made to understand the macroscopic details and effects of ash accumulation on DPF performance, this study explores the nano- and micron-scale forces which impact particle adhesion and mobility within the particulate filter.
X