Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Journal Article

Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in Two-Dimensional Piston Cavity

2013-10-15
2013-32-9021
The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame.
Technical Paper

Influence of Mixture Stratification Patter non Combustion Characteristics in a Constant-Volume Combustion Chamber

1995-10-01
952412
A pancake-type constant-volume combustion chamber was used to investigate the combustion and NOx emission characteristics of propane-air and hydrogen-air mixtures under various charge stratification patterns, which were obtained by variations of the initial charge and injected mixture concentrations and the ignition spark timing. A planar laser-induced fluorescence from nitrogen dioxide as gas fuel tracer was applied to measure the mixture distribution in the test chamber. The second harmonic output of pulsed Nd; YAG laser was used as a light source for fluorescence excitation. The fluorescence images were corrected by a gated image-intensified CCD camera. The quantitative analysis of fuel concentration was made possible by the application of linearity between fluorescence intensity and NO2 concentration at low trace level.
X