Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Diesel Combustion Noise Reduction by Controlling Piston Vibration

2015-04-14
2015-01-1667
It has been required recently that diesel engines for passenger cars meet various requirements, such as low noise, low fuel consumption, low emissions and high power. The key to improve the noise is to reduce a combustion noise known as “Diesel knock noise”. Conventional approaches to reduce the diesel knock are decreasing combustion excitation force due to pilot/pre fuel injection, adding ribs to engine blocks or improving noise transfer characteristics by using insulation covers. However, these approaches have negative effects, such as deterioration in fuel economy and increase in cost/weight. Therefore, modification of engine structures is required to reduce it. We analyzed noise transfer paths from a piston, a connecting rod, a crank shaft to an engine block and vibration behavior during engine operation experimentally, and identified that piston resonance was a noise source.
Technical Paper

Numerical Simulation on Soot Formation in Diesel Combustion by Using a CFD Code Combined with a Parallelized Explicit ODE Solver

2014-10-13
2014-01-2567
The objective of the present study is to analyze soot formation in diesel engine combustion by using multi-dimensional combustion simulations with a parallelized explicit ODE solver. Parallelized CHEMEQ2 was used to perform detailed chemical kinetics in KIVA-4 code. CHEMEQ2 is an explicit stiff ODE solver developed by Mott et al. which is known to be faster than traditional implicit ODE solvers, e.g., DVODE. In the present study, about eight times faster computation was achieved with CHEMEQ2 compared to DVODE when using a single thread. Further, by parallelizing CHEMEQ2 using OpenMP, the simulations could be run not only on calculation servers but also on desktop machines. The computation time decreases with the number of threads used. The parallelized CHEMEQ2 enabled combustion and emission characteristics, including detailed soot formation processes, to be predicted using KIVA-4 code with detailed chemical kinetics without the need for reducing the reaction mechanism.
Journal Article

Combustion Technology Development for a High Compression Ratio SI Engine

2011-08-30
2011-01-1871
Internal combustion engines still play a vital role in realizing the low carbon society. For spark ignition engines, further improvement in thermal efficiency can be achieved by increasing both compression and specific heat ratios. In the current work, the authors developed practical technologies to prevent output power loss due to knocking at full load, which is a critical issue for increasing compression ratio. These new technologies allowed to increase the compression ratio significantly and provide an equivalent torque level as a conventional engine. As a result, thermal efficiency has been improved at partial load.
Technical Paper

New Methodology of Life Cycle Assessment for Clean Energy Vehicle and New Car Model

2011-04-12
2011-01-0851
Mazda announced that all customers who purchase Mazda cars are provided with the joy of driving and excellent environmental and safety performance under slogan of "Sustainable Zoom-Zoom" long-term vision for technology development. The purpose of this study is to develop a new approach of Life Cycle Assessment (abbreviated to LCA) to be applied to clean energy vehicles and new car models. The improvement of both environmental performance, e.g., fuel consumption, exhaust emissions, vehicle weight reduction, and LCA that is a useful methodology to assess the environmental load of automobiles for their lifecycles has become more important. LCA by inventory analysis, for RX-8 Hydrogen RE as a rotary engine vehicle used hydrogen as clean energy, was carried out and disclosed the world for the first time. LCA for new Mazda 5 was carried out as the portfolio of all models, previously only the specific model equipped with fuel efficiency device based on ISO14040.
Technical Paper

An Analysis of Ambient Air Entrainment into Split Injection D.I. Gasoline Spray by LIF-PIV Technique

2002-10-21
2002-01-2662
Effects of split injection, with a relatively short time interval between the two sprays, on the spray development process, and the air entrainment into the spray, were investigated by using laser induced fluorescence and particle image velocimetry (LIF-PIV) techniques. The velocities of the spray and the ambient air were measured. The cumulative mass of the ambient air entrained into the spray was calculated by using the entrainment velocity normal to the spray boundary. The vortex structure of the spray, formed around the leading edge of the spray, showed a true rotating flow motion at low ambient pressures of 0.1 MPa, whereas at 0.4 MPa, it was not a true rotating flow, but a phenomenon of the small droplets separating from the leading edge of the spray and falling behind, due to air resistance. The development processes of the 2nd spray were considerably different from that of the 1st spray because the 2nd spray was injected into the flow fields formed by the 1st spray.
Technical Paper

Measurement of Oxygen Storage Capacity of Three-Way Catalyst and Optimization of A/F Perturbation Control to Its Characteristics

2002-03-04
2002-01-1094
In order to study alternate methods of Air Fuel ratio (A/F) perturbation for maximizing three-way catalyst conversion efficiency, two methods for measuring the Oxygen Storage Capacity (OSC) of Catalyst were developed on an engine test bench. The first is to measure just the break-through Perturbing Oxygen Quantity (POQ, which is defined as the product of A/F amplitude, perturbation period and gas flow), and the second is to measure the response delay of the rear A/F sensor, which has been improved to be very similar to the former. Then, the OSC values of many catalysts were investigated with different perturbation parameters. The results show that OSC would not be affected by amplitude, period of perturbation and gas flow, and that the best conversion efficiency is obtained when the value of POQ is about 1/2 of the value for OSC. These results suggest that the best way to control perturbation is to keep POQ at 1/2 of OSC by setting perturbation parameters.
Technical Paper

Development of cabin air filter with aldehyde capture function

2000-06-12
2000-05-0343
Aldehydes are the cause of sick house syndrome or chemical sensitivity and have harmful influences for human beings. In the cabin of vehicle, aldehydes which are included in the volatilization gas from the interior materials, DE emission gas in intake air, cigarette smoke and so on spoil the comfortableness. Active carbon, which has been used as an adsorbent, shows an excellent removal efficiency for most of the gas components by physical adsorption. But for aldehydes, it has difficulty because aldehydes are hard to be adsorbed physically. We have developed new aldehydes adsorbent undergoing addition reaction with gaseous aldehydes on its surface. Aldehydes capture material (ACM) make use of the chemical reaction using a resorcin as a reagent and an H-type zeolite as a water-containing support, and active hydrogen is used as a catalyst to promote the reaction. In addition, we have applied ACM to cabin air filter (CAF) of vehicle.
Technical Paper

Improving NOx and Fuel Economy for Mixture Injected SI Engine with EGR

1995-02-01
950684
A large quantity of recirculated exhaust gas is used to reduce NOx emissions and improve fuel economy at the same time. The effect of exhaust gas recirculation (EGR) was investigated under the stoichiometric and lean operating conditions and compared with the effect of lean operation without EGR. A mixture injected SI engine that has a mechanically driven mixture injection valve installed was prepared. In this engine, it is possible to charge combustible mixture independently from combustion air and recirculated exhaust gas introduced from intake port in order to stratify the mixture. The effect of the EGR ratio on NOx emissions and fuel consumption was measured under the stoichiometric and lean operating conditions. Due to the mixture distribution controlled by the mixture injection, a large quantity of recirculated exhaust gas could be introduced into the combustion chamber under the stoichiometric air/fuel ratio. The limit of EGR ratio was 48 %.
Technical Paper

Mechanism of Combustion Chamber Deposit Interference and Effects of Gasoline Additives on CCD Formation

1995-02-01
950741
Recently, an audible clattering noise has been noticed in some vehicles during cold engine starts, mainly in the U.S. The clattering is referred to by various names, such as “carbon knock,” “carbon rap,” “mechanical knock” and “combustion chamber deposit interference (CCDI).” CCDI is believed to be caused by the deposit formation in the combustion chamber. In the research effort described here, CCDI was successfully reproduced in a 2.5-liter multipoint injection engine with a polyolefin amine gasoline additive. It was determined that the CCDI was caused by mechanical contact between the piston top and the cylinder head deposits. The vibration due to CCDI originated mainly at the thrust side of the piston right after top-dead-center on compression stroke and was characterized by a high frequency response. Combustion chamber deposit (CCD) formation depends on many factors, including gasoline additives.
Technical Paper

Development of the Stratified Charge and Stable Combustion Method in DI Gasoline Engines

1995-02-01
950688
The new combustion method in DISC engine has been developed. It has a double structure combustion chamber characterized as ‘Caldera’. The chamber is constructed by a center cavity for the purpose of forming a stable mixture around a spark plug electrode, and by an outer cavity which has a role of a main chamber. This method makes possible a perfect un-throttling operation, and a fuel consumption equal to a diesel engine is achieved. With regard to an out-put of DISC engine, a stoichmetric combustion and a high torque are achieved by controling a fuel injection timing with an electro-magnetic injection system device. With regard to emission regulations, a heavy EGR include residual gas decreases greatly NOx and HC emissions simultaneously, and which suggests a possibility to achieve LEV/ULEV regulations.
Technical Paper

Development of Lean Burn Catalyst

1995-02-01
950746
A new type of three way catalyst for lean engine was developed in order to reduce hydrocarbon (HC), carbon-monoxide (CO) and nitrogen-oxides (NOx) in lean exhaust gas. This catalyst has a base support material of MFI zeolite loaded with active metals including platinum (Pt), iridium (Ir) and rhodium (Rh). It showed good catalytic activity and thermal durability on a lean engine. This catalyst made it possible to enlarge the lean operating region of the lean burn engine. It showed the NOx reduction of 51% in Japanese 10-15 mode emission test and the emissions were found low enough to satisfy the new Japanese emission standards. Consequently, fuel economy of the lean vehicle with this catalyst has been improved about 16% in comparison with a comparable current stoichiometric combustion vehicle. This catalyst has been mass-produced for Mazda 323 lean burn vehicle (Z-Lean) for the Japanese domestic market.
Technical Paper

Mechanism of Improving Fuel Efficiency by Miller Cycle and Its Future Prospect

1995-02-01
950974
We have introduced a supercharged Miller Cycle gasoline engine into the market in 1993 as an answer to the requirement of reduction in CO2 emission of vehicles. Improvement in the fuel economy of a supercharged Miller Cycle engine is achieved by the reduction of friction loss due to a smaller displacement. The biggest problem of a conventional supercharged engine is knocking. In order to avoid the knocking, lower compression ratio, which accompanies lower expansion ratio, has been adopted by the conventonal engines and achieved insufficient fuel economy improvement. The Miller Cycle obtains superior anti-knocking performance as well as lowering compression ratio, while keeping the high expansion ratio. The decreased friction loss by the smaller displacement has completely lead to the improvement of fuel economy.
Technical Paper

Development of V6 Miller Cycle Gasoline Engine

1994-03-01
940198
A gasoline engine with an entirely new combustion cycle deriving from Miller Cycle is developed. By delaying closing timing of intake valve and with new Lysholm Compressor which provides higher boost pressure, engine knocking is avoided while high compression ratio is maintained and approximately 1.5 times larger toque than that of a naturally aspirated(NA) engine of the same displacement is realized. This V6 Miller Cycle gasoline engine can be the alternative to a larger displacement NA engine because of its equivalent torque performance and its lower fuel consumption by the effect of smaller displacement.
Technical Paper

Surrounding Combustion Process (SCP) - New Concept for Lean Burn Engine

1992-02-01
920058
Both NOx and unburned HC were reduced by changing the direction of the flame propagation. It is generally said that the optimum ignition position of spark ignition engine is in the center of combustion chamber. However by igniting arround the chamber and propagating the flame toward the center, a smooth heat release pattern due to the decrease in the flame area and a decrease in the unburned gas entering the ring crevise can be anticipated. These effects of this combustion process, which was named the surrounding combustion process (SCP), were experimntally confirmed using the constant volume combustion vessels and the spark ignition engine equipped with six spark plugs per cylinder. Next, the steps for decreasing the number of ignitions TCre considered, and additional three spark plugs for SCP were installed in the four valve pentroof combustion chamber. With this engine, the NOx reduction and the capability of SCP to further improve the lean burn engine fuel economy were confirmed.
Technical Paper

Combustion Characteristics in Hydrogen Fueled Rotary Engine

1992-02-01
920302
A hydrogen-fueled rotary engine was investigated with respect to the effects of the fuel supply method, spark plug rating and spark plug cavity volume on abnormal combustion. It was found that abnormal combustion was caused by pre-ignition from the spark plugs and gas leakage through the plug hole cavity. The hydrogen-fueled rotary engine could function through a wide operating range at a theoretical air-to-fuel ratio by optimising the above factors. Consequently, the hydrogen-fueled rotary engine achieved output power of up to 63%-75% of the gasoline specification, while the hydrogen-fueled reciprocating engine only reached 50%.
Technical Paper

A Study About In-Cylinder Flow and Combustion in a 4-Valve S.I. Engine

1992-02-01
920574
Lean-burn technology is now being reviewed again in view of demands for higher efficiency and cleanness in internal combustion engines. The improvement of combustion using in-cylinder gas flow control is the fundamental technology for establishing lean-burn technology, but the great increase in main combustion velocity due to intensifying of turbulence causes a deterioration in performance such as increase in heat loss and N0x. Thus, it is desirable to improve combustion stability while suppressing the increase in main burn velocity as much as possible (1). It is expected that the fluid characteristics of the in-cylinder tumbling motion that the generated vortices during intake stroke breake down in end-half of compression stroke will satisfy the above requisition. This study is concerned with the effects of enhancing of tumble intensity on combustion in 4-valve S. I. engines.
Technical Paper

Development of Plastic Fuel Tank Using Modified Multi-Layer Blow Molding

1990-02-01
900636
A new and very practical technology has been developed to prevent gasoline permeation in plastic fuel tanks. The main body of the new tank is multi-layered, consist of high density polyethylene (HDPE), adhesive resin, polyamide (PA). The top and bottom parts of the tank are single layer consist of HDPE. This method has many advantages including such features as excellent gasoline permeation prevention, the processing time is the same as that for conventional blow molding methods, the method is safe because no toxic substances are used in the treatment process, the cost-performance ratio is excellent due to the minimum use of expensive auxiliaries (PA, adhesive resin), and the top and bottom single layer flashes can be re-used if they are pulverized.
Technical Paper

Development of Low Particulate Engine with Ceramic Swirl Chamber

1986-10-01
861407
An all-ceramic swirl chamber has been developed which meets the 1987 U.S. particulate emission standard for LDV. The all ceramic construction raises combustion temperature to reduce particulate emission to the necessary level. But particulate reduction led to two-fold increase in NOx. This problem was coped with by applying EGR and fuel injection timing control. As a result NOx has been cut to the same level as with a base engine and particulate has been further reduced.
X