Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Age-Specific Pediatric Cervical Spine Biomechanical Responses: Three-Dimensional Nonlinear Finite Element Models

1997-11-12
973319
In this study, three-dimensional nonlinear finite element models of age-specific one year old, three year old, and six year old pediatric human cervical spine (C4-C5-C6) structures were developed. Their biomechanical responses were compared with the adult human cervical spine behavior under different loadings and at all load levels. The adult human cervical spine model was constructed from close-up computed tomography sections in the axial and sagittal planes, and sequential anatomic cryomicrotome sections. The adult model was validated with experimental moment-rotation data under flexion-extension and compression by correlating bilateral strains in the vertebral body and the lateral masses, and the force-deflection responses with experiments conducted in our laboratory. The adult model was modified to create one, three and six year old pediatric spines by incorporating the local geometrical and material characteristics of the developmental anatomy.
Technical Paper

Chestband Analysis of Human Tolerance to Side Impact

1997-11-12
973320
A series of 26 human cadaver tests with chestband instrumentation and accelerometers were completed to assess side impact injury tolerance. A Heidelberg-type sled test system was used with thorax, abdomen, and pelvic load plates. Tests were conducted at the Medical College of Wisconsin and through the Ohio State University College of Medicine at the NHTSA Vehicle Research and Test Center at two different velocities: 24 kph and 32 kph. Test conditions included rigid wall, padded wall, and pelvic offset. Accelerations were recorded at rib 4, rib 8, and T12. Up to three chestbands were placed on each surrogate. Chest deflections were derived by computing chest contours at every millisecond throughout the event. The derived chest deflection-time curves were differentiated to obtain velocity of chest compression. Injury criteria including ASA15N, TTI, normalized chest deflection, and VC were computed. Resulting injuries ranged from AIS = 0 to AIS = 5.
X