Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Study of the Effect of a Catalyzed Particulate Filter on the Emissions from a Heavy-Duty Diesel Engine with EGR

2001-03-05
2001-01-0910
The effects of a catalyzed particulate filter (CPF) and Exhaust Gas Recirculation (EGR) on heavy-duty diesel engine emissions were studied in this research. EGR is used to reduce the NOx emissions but at the same time it can increase total particulate matter (TPM) emissions. CPF is technology available for retrofitting existing vehicles in the field to reduce the TPM emissions. A conventional low sulfur fuel (371 ppm S) was used in all the engine runs. Steady-state loading and regeneration experiments were performed with CPF I to determine its performance with respect to pressure drop and particulate mass characteristics at different engine operating conditions. From the dilution tunnel emission characterization results for CPF II, at Mode 11 condition (25% load - 311 Nm, 1800 rpm), the TPM, HC and vapor phase emissions (XOC) were decreased by 70%, 62% and 62% respectively downstream of the CPF II.
Technical Paper

A Study of the Character and Deposition Rates of Sulfur Species in the EGR Cooling System of a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3566
Various measurement techniques were employed to quantify sulfuric acid deposition levels and concentration of sulfuric acid in the condensate from the recirculated exhaust gas heat exchanger of a 1995 Cummins M11 heavy-duty diesel engine. Methods employed included a modified version of the sulfur species sampling system developed by Kreso et al. (1)*, rinsing the heat exchanger, and experiments employing a condensate collection device (CCD). The modified sampling system was applied to the inlet and outlet of the heat exchanger in order to quantify the changes in various sulfur compounds. Doped sulfur fuel (3300 to 4000 ppm S) was used to increase the concentrations of the various oxides of sulfur (SOx). These tests were performed at mode 9 of the old EPA 13-mode test cycle (1800 RPM, 932N*m) with 17-20% exhaust gas recirculation (EGR) at two EGR outlet temperatures: 160°C and 103°C.
Technical Paper

A Study of the Effects of Exhaust Gas Recirculation on Heavy-Duty Diesel Engine Emissions

1998-05-04
981422
The effects of exhaust gas recirculation (EGR) on heavy-duty diesel emissions were studied at two EPA steady-state operating conditions, old EPA mode 9* (1800 RPM, 75% Load) and old EPA mode 11 (1800 RPM, 25% Load). Data were collected at the baseline, 10% and 16% EGR rates for both EPA modes. The study was conducted using a 1995 Cummins M11-330E heavy-duty diesel engine and compared to the baseline emissions from the Cummins 1988 and 1991 L10 engines. The baseline gas-, vapor- and particle-phase emissions were measured together with the particle size distributions at all modes of operation. The total particulate matter (TPM) and vapor phase (XOC) samples were analyzed for physical, chemical and biological properties. The results showed that newer engines with electronic engine controls and higher injector pressures produce TPM decreases from the 1988 to 1991 to 1995 engines with the solids decreasing more than the soluble organic fraction (SOF) of TPM.
Technical Paper

A Review of Diesel Particulate Control Technology and Emissions Effects - 1992 Horning Memorial Award Lecture

1994-03-01
940233
Studies have been conducted at Michigan Technological University (MTU) for over twenty years on methods for characterizing and controlling particulate emissions from heavy-duty diesel engines and the resulting effects on regulated and unregulated emissions. During that time, control technologies have developed in response to more stringent EPA standards for diesel emissions. This paper is a review of: 1) modern emission control technologies, 2) emissions sampling and chemical, physical and biological characterization methods and 3) summary results from recent studies conducted at MTU on heavy-duty diesel engines with a trap and an oxidation catalytic converter (OCC) operated on three different fuels. Control technology developments discussed are particulate traps, catalysts, advances in engine design, the application of exhaust gas recirculation (EGR), and modifications of fuel formulations.
Technical Paper

Evaluation and Application of a Portable Tailpipe Emissions Measurement Apparatus for Field Use

1992-09-01
921647
This paper discusses the evaluation and application of a portable parked-vehicle tailpipe emissions measurement apparatus (EMA). The EMA consists of an exhaust dilution system and a portable instrument package. The EMA instantaneously dilutes and cools a sample of exhaust with compressed nitrogen or air at a known dilution ratio, thereby presenting it to instruments as it is presented to personnel in the surrounding environment. The operating principles and governing equations of the EMA are presented. A computational method is presented to determine the engine operating and performance parameters from the exhaust CO2 concentrations along with an assumed engine overall volumetric efficiency and brake specific fuel consumption. The parameters determined are fuel/air ratio, mass flow rates of fuel, air and exhaust emissions, and engine brake torque and horsepower.
Technical Paper

The Study of the Effect of Exhaust Gas Recirculation on Engine Wear in a Heavy-Duty Diesel Engine Using Analytical Ferrography

1986-03-01
860378
A study was undertaken to investigate the affect of exhaust gas recirculation (EGR) on engine wear and lubricating oil degradation in a heavy duty diesel engine using a newly developed methodology that uses analytical ferrography in conjunction with short term tests. Laboratory engine testing was carried out on a Cummins NTC-300 Big Cam II diesel engine at rated speed (1800 RPM) and 75% rated load with EGR rates of 0, 5, and 15% using a SAE 15W40 CD/SF/EO-K oil. Dynamometer engine testing involved collecting oil samples from the engine sump at specified time intervals through each engine test. These oil samples were analyzed using a number of different oil analysis techniques that provide information on the metal wear debris and also on the lubricating oil properties. The results from these oil analysis techniques are the basis of determining the effect of EGR on engine wear and lubricating oil degradation, rather than an actual engine tear down between engine tests.
Technical Paper

The Effect of Fuel Injection Rate and Timing on the Physical, Chemical, and Biological Character of Particulate Emissions from a Direct Injection Diesel

1981-09-01
810996
Formation of pollutants from diesel combustion and methods for their control have been reviewed. Of these methods, fuel injection rate and timing were selected for a parametric study relative to total particulate, soluble organic fraction (SOF), sulfates, solids and NO and NO2 emissions from a heavy-duty, turbocharged, after-cooled, direct-injection (DI) diesel. Chemical analyses of the SOF were performed at selected engine conditions to determine the effects of injection rate and timing on each of the eight chemical subfractions comprising the SOF. Biological character of the SOF was determined using the Ames Salmonella/microsome bioassay.
Technical Paper

The Characterization of the Hydrocarbon and Sulfate Fractions of Diesel Particulate Matter

1978-02-01
780111
One of the more objectionable aspects of the use of diesel engines has been the emission of particulate matter. A literature review of combustion flames, theoretical calculations and dilution tunnel experiments have been performed to elucidate the chemical and physical processes involved in the formation of diesel particulate matter. A comparative dilution tunnel study of diluted and undiluted total particulate data provided evidence supporting calculations that indicate hydro-carbon condensation should occur in the tunnel at low exhaust temperatures. The sample collection system for the measurement of total particulate matter and soluble sulfate in particulate matter on the EPA 13 mode cycle is presented. A method to correct for hydrocarbon interferences in the EPA barium chloranilate method for the determination of sulfate in particulate matter is discussed.
Technical Paper

The Physical and Chemical Character of Diesel Particulate Emissions-Measurement Techniques and Fundamental Considerations

1978-02-01
780108
The techniques used to characterize the chemical and physical nature of particulates in diesel exhaust emissions are reviewed. The emphasis is on understanding the broader aspects of the fundamental nature of not only diesel particulates, but particulate systems in general. Consideration is given to the special nature of particulates which make them significant pollutants and to the relative place of the diesel in the formation of man-made particles. The underlying combustion processes leading to carbon and sulfur based particulates are reviewed. The important variables in steps of the combustion processes which lead to particulate formation are considered, as well as major fuel and engine factors. Collection methods are examined with examples given from current diesel dilution techniques. Probes, sampling lines, and instrumentation are considered.
X