Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Technique to Identify the Structure Borne Sound Sources Induced by Powertrain Vibration Behavior

1995-05-01
951235
Identification of structure borne sound sources induced by the structural vibration of an automotive powertrain has been studied. Based on the principal component analysis which uses singular value decomposition of a matrix consisting of the auto- and cross-spectra, the operating vibrational analysis is performed. The quantitative description of the output power due to intrinsic incoherent source is addressed. The applicability of the technique is tested both numerically and experimentally. First, the coherence analysis is numerically carried out with a simple structure which is modeled as multi-input and single output to identify the structure borne noise generation process. Second, the actual vibrational behavior of a powertrain structure and the interior noise analysis of a car under the running condition are carried out. The technique is shown to be very effective in the identification of the structure borne noise sources.
Technical Paper

Three Dimensional Crankshaft Vibration Analysis Including Gyroscopic Effect

1994-03-01
940699
It has been recently reported that the crankshaft vibration provides the main exciting source in the power train vibration. This paper presents the analytical method for the vibration of crankshaft by using the finite element method. The optimization process is employed so that the beam model of the crankshaft can have the same natural frequencies as those of solid model on the free-free condition. The mode analysis of the crankshaft whirling is made in the consideration of the gyroscopic effect and the changes of the natural frequencies are also studied with the increase of the engine speed. Finally, the forced vibration of the crankshaft is solved on the time domain and the results are compared with those of the experimental measurements of bending moment by using the strain gage. This crankshft system model can be used to analyze the forced vibration of the full power train as well.
Technical Paper

Weight Reduction and Noise Refinement of the Hyundai 1.5 Liter Powertrain

1994-03-01
940995
The weight reduction and noise refinement of powertrain has been major concern in automotive industry although they are known as self trade-off. This paper presents various methods to deal with those problems for new Hyundai 1.5 liter powertrain. It was possible to reduce the weight of powertrain by using plastic for both headcover and intake manifold, aluminum for crankshaft damper pulley and stainless steel for exhaust manifold and by reducing the general thickness of cylinder block On the other hand, the noise refinement of vibration in the powertrain was made by optimizing the engine structure and by adapting the hydraulic lash adjuster valve train system, which was proved to be effective in mechanical noise of engine.
Technical Paper

Identification of the Relation Between Crank Shaft Bending and Interior Noise of A/T Vehicle in Idle State

1993-03-01
930618
This paper shows the cause and the solution to the uncommon noise which happens ½ order component of engine rpm when a vehicle with automatic transmission has an air conditioning load and “drive” range load on the engine. By measuring cylinder pressure, main bearing cap vibration, engine mount vibration, and interior noise simultaneously, the cause of the noise can be proved by analyzing and comparing the data. The cause of the uncommon noise is bending vibration of the crank shaft. To solve the problem, one can change the crank shaft dynamics by reducing the mass of the damper pulley.
X