Refine Your Search

Topic

Author

Search Results

Technical Paper

Post-Mortem Analysis of DAAAC and Conventionally Aged Aftertreatment Systems

2023-10-31
2023-01-1656
Upcoming regulations from CARB and EPA will require diesel engine manufacturers to validate aftertreatment durability with full useful life aged components. To this end, the Diesel Aftertreatment Accelerated Aging Cycle (DAAAC) protocol was developed to accelerate aftertreatment aging by accounting for hydrothermal aging, sulfur, and oil poisoning deterioration mechanisms. Two aftertreatment systems aged with the DAAAC protocol, one on an engine and the other on a burner system, were directly compared to a reference system that was aged to full useful life using conventional service accumulation. After on-engine emission testing of the fully aged components, DOC and SCR catalyst samples were extracted from the aftertreatment systems to compare the elemental distribution of contaminants between systems. In addition, benchtop reactor testing was conducted to measure differences in catalyst performance.
Technical Paper

Comparison of Representative Wet and Dry Fire Suppressants to Retard Fire Propagation in Lithium-Ion Modules Initiated by Overcharge Abuse

2023-04-11
2023-01-0520
Overcharging lithium-ion batteries is a failure mode that is observed if the battery management system (BMS) or battery charger fails to stop the charging process as intended. Overcharging can easily lead to thermal runaway in a battery. In this paper, nickel manganese cobalt (NMC) battery modules from the Chevrolet Bolt, lithium manganese oxide (LMO) battery modules from the Chevrolet Volt, and lithium iron phosphate (LFP) battery modules from a hybrid transit bus were overcharged. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages, gaseous emissions, and feedback from volatile organic compound (VOC) sensors. Overcharging a battery can cause lithium plating and other exothermic reactions that will lead to thermal runaway.
Technical Paper

Optimization of Surfactant and Catalyst Modified Urea-Water Solution Formulation for Deposit Reduction in SCR Aftertreatment Systems

2022-03-29
2022-01-0541
Selective Catalytic Reduction is the primary method of NOX emission abatement in lean-burn internal combustion. This process requires the decomposition of a 32.5 wt. % urea-water solution (UWS) to provide ammonia as a reducing agent for NOX, but at temperatures < 250 °C the injection of UWS is limited due to the formation of harmful deposits within an aftertreatment system and decreased ammonia production. Previous work has sufficiently demonstrated that the addition of surfactant and a urea/isocyanic acid (HNCO) decomposition catalyst to UWS can significantly decrease deposit formation within an aftertreatment system. The objective of this work was to further optimize the modified UWS formulation by investigating different types and concentrations of surfactants and titanium-based urea/HNCO catalyst. Because there is a correlation between surface tension and water evaporation, it was theorized that minimizing the surface tension of UWS would result in decreased deposit formation.
Technical Paper

Unregulated Emissions Characterization and Comparison for Two Off-Road Applications: A DPF and Non-DPF Engine

2022-03-29
2022-01-0587
As governmental agencies focus on low levels of the oxides of nitrogen (NOx) emissions compliance, new off-road applications are being reviewed for both regulated and unregulated emissions to understand the technological challenges and requirements for improved emissions performance. The California Air Resources Board (CARB) has declared its intention to pursue more stringent NOX standards for the off-road market. As part of this effort, CARB initiated a program to provide a detailed characterization of emissions meeting the current Tier 4 off-road standards [1]. This work focused on understanding the off-road market, establishing a current technology emissions baseline, and performing initial modeling on potential low NOx solutions. This paper discusses a part of this effort, focuses on the emissions characterization from two non-road engine platforms, and compares the emissions species from different approaches designed to meet Tier 4 emissions regulations.
Technical Paper

Detailed Emissions Characterization for Off-Road Applications: A DPF and non-DPF Engine Comparison

2022-03-29
2022-01-0585
As agencies continue to focus on emissions compliance, low NOX discussions have started to propagate beyond the on-highway market. Nonroad applications, which contribute to 29% of the PM emissions and 11% of the NOX emissions in California, are being reviewed to understand the technological challenges and requirements for improved emissions performance. To help facilitate a nonroad low NOX technology demonstration, information from current engine and aftertreatment technologies required a detailed assessment. The following work will discuss the emissions characterization results from two non-road engine platforms. The intention of this study was to compare the emissions species from different approaches designed to meet Tier 4 emissions regulations. The platforms reflect available technology for DPF and non-DPF aftertreatment architectures.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0707
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0715
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Technical Paper

Detailed Characterization of Gaseous Emissions from Advanced Internal Combustion Engines

2021-04-06
2021-01-0634
With the advancement of engine technologies and combustion strategies, aftertreatment architectures are expected to evolve as they continue to be the primary emissions mitigation hardware. Some of the engine approaches offer unique challenges and benefits that are not well understood beyond criteria pollutant emissions. As such, there continues to be a need to quantify engine emissions characteristics in pursuit of catalyst technology development and the use of advanced simulation tools. The following study discusses results from an extensive engine emissions assessment for current state-of-the-art technology and novel combustion regimes. The engines tested include a Tier 4 final compliant 6.8 L John Deere PSS 6068 diesel engine, a modified 15 L diesel engine, and a dual fuel 13 L natural gas-diesel engine. The dual fuel engine could operate in conventional positive ignition mode (CDF) or low temperature reactivity-controlled compression ignition mode (RCCI).
Technical Paper

Comparison of Partial and Total Dilution Systems for the Measurement of Polycyclic Aromatic Hydrocarbons and Hydrocarbon Speciation in Diesel Exhaust

2020-09-15
2020-01-2190
Two methods of sampling exhaust emissions are typically used for characterizing emissions from diesel engines: total dilution which uses a constant volume sampling (CVS) system and partial flow dilution which relies on proportionally diluting a small part from the main exhaust stream. The CVS dilutes the entire exhaust flow to a constant volumetric flowrate which allows for proportional sampling of the exhaust species during transient engine operation. For partial dilution sampling during transient engine operation, obtaining a proportional sample is more rigorous and dilution of the extracted sample must be continuously changed throughout the cycle in order for the extracted sample flowrate to be proportional to the continuously changing exhaust flow. Typically, regulated emissions measured using both methods for an engine platform have shown good correlation. The focus for this work was on the experimental investigation of the two methods for the measurement of unregulated species.
Technical Paper

Improving Heavy Duty Natural Gas Engine Efficiency: A Systematic Approach to Application of Dedicated EGR

2020-04-14
2020-01-0818
The worldwide trend of tightening CO2 emissions standards and desire for near zero emissions is driving development of high efficiency natural gas engines for a low CO2 replacement of traditional diesel engines. A Cummins Westport ISX12 G was previously converted to a Dedicated EGR® (D-EGR®) configuration with two out of the six cylinders acting as the EGR producing cylinders. Using a systems approach, the combustion and turbocharging systems were optimized for improved efficiency while maintaining the potential for achieving 0.02 g/bhp-hr NOX standards. A prototype variable nozzle turbocharger was selected to maintain the stock torque curve. The EGR delivery method enabled a reduction in pre-turbine pressure as the turbine was not required to be undersized to drive EGR. A high energy Dual Coil Offset (DCO®) ignition system was utilized to maintain stable combustion with increased EGR rates.
Technical Paper

Relationship among Various Particle Characterization Metrics Using GDI Engine Based Light-Duty Vehicles

2018-04-03
2018-01-0353
In recent years, gasoline direct injection (GDI) engines have been widely used by manufacturers in light-duty to meet stringent fuel economy and emissions standards. This study focuses on the relationship between various particle metrics such as number, size, surface area and mass of dilute exhaust particles from 12 different light-duty vehicles equipped with GDI engines. The campaign included the measurement of total particulate matter (PM) using Title 40 CFR Part 1066 compliant filter measurement, soot mass using photo-acoustics based analyzer, organic carbon (OC) & elemental carbon (EC) mass using thermo-optical analysis of quartz filter samples, solid particle number using European Union Regulation No. 49 compliant number system and solid particle size/number using an electrical mobility based size spectrometer.
Technical Paper

Solid Particle Number and Ash Emissions from Heavy-Duty Natural Gas and Diesel w/SCRF Engines

2018-04-03
2018-01-0362
Solid and metallic ash particle number (PN) and particulate matter (PM) mass emission measurements were performed on a heavy-duty (HD) on-highway diesel engine and a compressed natural gas (CNG) engine. Measurements were conducted under transient engine operation that included the FTP, WHTC and RMC. Both engines were calibrated to meet CARB ultra low NOX emission target of 0.02 g/hp-hr, a 90% reduction from current emissions limit. The HD diesel engine final exhaust configuration included a number of aftertreatement sub-systems in addition to a selective catalytic reduction filter (SCRF). The stoichiometric CNG engine final configuration included a closed coupled Three Way Catalyst (ccTWC) and an under floor TWC (ufTWC). The aftertreatment systems for both engines were aged for a full useful life (FUL) of 435,000 miles, prior to emissions testing. PM mass emissions from both engines were comparable and well below the US EPA emissions standard.
Technical Paper

Fuel Effects Study with In-Use Two-Stroke Motorcycles and All-Terrain-Vehicles

2013-10-14
2013-01-2518
This paper covers work performed for the California Air Resources Board and US Environmental Protection Agency by Southwest Research Institute. Emission measurements were made on four in-use off-road two-stroke motorcycles and all-terrain vehicles utilizing oxygenated and non-oxygenated fuels. Emission data was produced to augment ARB and EPA's off-road emission inventory. It was intended that this program provide ARB and EPA with emission test results they require for atmospheric modeling. The paper describes the equipment and engines tested, test procedures, emissions sampling methodologies, and emissions analytical techniques. Fuels used in the study are described, along with the emissions characterization results. The fuel effects on exhaust emissions and operation due to ethanol content and fuel components is compared.
Technical Paper

Fuel Effects Study with Small (<19kW) Spark-Ignited Off-Road Equipment Engines

2013-10-14
2013-01-2517
This paper covers work performed for the California Air Resources Board and the United States Environmental Protection Agency by Southwest Research Institute. Emission measurements were made on nine types of off-road equipment with small (<19kW) spark-ignited engines including handheld and non-handheld equipment utilizing oxygenated and non-oxygenated fuels. Emission data was produced to augment ARB and EPA's off-road emission inventory. It was intended that this program provide ARB and EPA with emission test results they require for atmospheric modeling. The paper describes the equipment and engines tested, test procedures, emissions sampling methodologies, and emissions analytical techniques. Fuels used in the study are described, along with the emissions characterization results. The fuel effects on exhaust emissions and operation due to ethanol content and fuel components is compared.
Technical Paper

Locomotive Emissions Measurements for Various Blends of Biodiesel Fuel

2013-09-08
2013-24-0106
The objective of this project was to assess the effects of various blends of biodiesel on locomotive engine exhaust emissions. Systematic, credible, and carefully designed and executed locomotive fuel effect studies produce statistically significant conclusions are very scarce, and only cover a very limited number of locomotive models. Most locomotive biodiesel work has been limited to cursory demonstration programs. Of primary concern to railroads and regulators is understanding any exhaust emission associated with biodiesel use, especially NOX emissions. In this study, emissions tests were conducted on two locomotive models, a Tier 2 EMD SD70ACe and a Tier 1+ GE Dash9-44CW with two baseline fuels, conventional EPA ASTM No. 2-D S15 (commonly referred to as ultra-low sulfur diesel - ULSD) certification diesel fuel, and commercially available California Air Resource Board (CARB) ULSD fuel.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Technical Paper

Countering the Effects of Media Interferences and Background Contamination in Collection of Low Concentration Aldehydes and Ketones in Engine Exhaust with Dinitrophenylhydrazine (DNPH) Derivatization

2011-08-30
2011-01-2060
This paper discusses a method developed to counter the variability of media interferences for the measurement of aldehydes and ketones in automotive exhaust. Dinitrophenylhydrazine (DNPH) Derivatization Methodology for the collection of aldehyde and ketone compounds in vehicle exhaust has been in use for over thirty years. These carbonyl compounds are captured by passing diluted exhaust gas through a sample medium containing DNPH. The sampling medium can take the form of DNPH dispersed on a solid sorbent or as a DNPH solution in a solvent such as acetonitrile. Carbonyl compounds react readily to form DNPH derivatives which are stable and which absorb ultra-violet (UV) light, facilitating quantitative measurement. However, when the procedure was developed, emissions rates from vehicles were much higher than the current (2010) emissions levels.
Technical Paper

Verification of a Gaseous Portable Emissions Measurement System with a Laboratory System Using the Code of Federal Regulations Part 1065

2010-04-12
2010-01-1069
This paper summarizes the validation testing of the Horiba Instruments OBS-2200 gaseous portable emissions measurement system (PEMS) for in-use compliance testing per Title 40 of the Code of Federal Regulations (CFR) Part 1065.920 (Section 1065.920). The qualification process included analyzer verifications as well as engine testing on a model-year 2007 heavy-duty diesel engine produced by Volvo Powertrain. The measurements of brake-specific emissions with the OBS-2200 were compared to those of a CFR Part 1065-compliant CVS test cell over a series of not-to-exceed (NTE) events. The OBS-2200 passed all linearity verifications and analyzer checks required of PEMS. Engine test validation was achieved for all three regulated gaseous emissions (CO, NMHC, and NOX) per 40 CFR Part 1065.920(b)(5)(i), which requires a minimum of 91 percent of the measurement allowance adjusted deltas to be less than or equal to zero.
Technical Paper

Development of an In-Service Snowmobile Emission Test Procedure For the SAE Clean Snowmobile Challenge

2009-11-02
2009-01-2625
As concerns over air pollution continue to increase, all vehicles are subject to greater scrutiny for their emissions levels. Snowmobiles and other off-road recreational vehicles are now required to meet emissions regulations enacted by the United States Environmental Protection Agency (EPA). Currently these vehicles are certified using a stationary test procedure with the engine operating attached to a dynamometer and following a five-mode test cycle. The five modes range from idle to wide open throttle and are chosen to represent the typical operation regime of a vehicle. In addition, the EPA five-mode stationary emissions test has been traditionally used for scoring competition snowmobiles at the SAE Clean Snowmobile Challenge (CSC). For the 2009 CSC, in-service emission testing was added to the competition to score the teams on actual, in-use emissions during operation of their competition snowmobile operated on a controlled test course.
Technical Paper

Experimental Study Comparing Particle Size and Mass Concentration Data for a Cracked and Un-Cracked Diesel Particulate Filter

2009-04-20
2009-01-0629
Steady state loading characterization experiments were conducted at three different engine load conditions and rated speed on the cracked catalyzed particulate filter (CPF). The experiments were performed using a 10.8 L 2002 Cummins ISM-330 heavy duty diesel engine. The CPF underwent a ring off failure, commonly seen in particulate filters, due to high radial and axial temperature gradients. The filters were cracked during baking in an oven which was done to regenerate PM collected after every loading characterization experiment. Two different configurations i.e. with and without a diesel oxidation catalyst (DOC) upstream of the CPF were studied. The data were compared with that on an un-cracked CPF at similar engine conditions and configurations. Pressure drop, transient filtration efficiency by particle size and PM mass and gaseous emissions measurements were made during each experiment.
X