Refine Your Search

Topic

Author

Search Results

Technical Paper

Multi Attribute Balancing of NVH, Vehicle Energy Management and Drivability at Early Design Stage Using 1D System Simulation Model

2019-01-09
2019-26-0178
Improving fuel efficiency often affects NVH performance. Modifying a vehicle’s design in the latter stages of development to improve NVH performance is often costly. Therefore, to optimize the cost performance, a Multi-Attribute Balancing (MAB) approach should be employed in the early design phases. This paper proposes a solution based on a unified 1D system simulation model across different vehicle performance areas. In the scope of this paper the following attributes are studied: Fuel economy, Booming, Idle, Engine start and Drivability. The challenges to be solved by 1D simulation are the vehicle performance predictions, taking into account the computation time and accuracy. Early phase studies require a large number of scenarios to evaluate multiple possible parameter combinations employing a multi-attribute approach with a systematic tool to ease setup and evaluation according to the determined performance metrics.
Technical Paper

Development of Momentum Source Model of Vehicle Turbocharger Turbine

2016-04-05
2016-01-0210
Recently, the evaluation of the thermal environment of an engine compartment has become more difficult because of the increased employment and installation of turbochargers. This paper proposes a new prediction model of the momentum source for the turbine of a turbocharger, which is applicable to three-dimensional thermal fluid analyses of vehicle exhaust systems during the actual vehicle development phase. Taking the computational cost into account, the fluid force given by the turbine blades is imitated by adding an external source term to the Navier-Stokes equations corresponding to the optional domain without the computational grids of the actual blades. The mass flow rate through the turbine, blade angle, and number of blade revolutions are used as input data, and then the source is calculated to satisfy the law of the conservation of angular momentum.
Technical Paper

A Reduced Order Turbo-Charging Model for Real Time Engine Torque Profile Control

2015-11-17
2015-32-0766
Torque profile control is one of required technologies for propulsion engines. A smaller parametric model is more preferable for control algorithm design and evaluation. Mean value engine torque can be obtained from throttle opening change using a transfer function. A transfer function for a turbocharged engine was investigated with thermo-dynamic equations for a turbine and a compressor and test data. A small turbocharged engine was tested to model the air transfer process. Turbine speed was measured with temperatures, pressures and air mass flow. Turbine speed response is like a first order system to air mass flow into a combustion chamber. The pressure ratio at the compressor is approximated by a curve proportional to the turbine speed square. Based on those findings, a reduced order model for describing dynamic air transfer process with a turbocharger was constructed. The proposed model is compact and suitable for engine torque control design and controller implementation.
Technical Paper

A Reduced Order Model for a Passenger Car Turbo Charging System and Application to Engine Output Torque Profile Control

2015-09-01
2015-01-1981
Downsizing engines with a turbocharging system have been widely applied to passenger cars to improve fuel economy. Engine torque response to accelerator operation is one of important features in addition to steady state performance of the system. Torque profile management for turbocharged internal combustion engines is one of required technologies. A turbocharging system for a car is a system with a positive feedback loop in which compressed air drives the compressor after the combustion process. A reduced order model was derived for the charging system. Pressure ratio of a compressor is proportional to square of turbine speed and the turbine speed is a first order delay system to throttle opening in the model. Model structure was designed from mathematical equations that describe turbine and compressor works. Model parameters were identified from measured data. An output torque profile control strategy based on the derived model is investigated.
Journal Article

A Study on Knocking Prediction Improvement Using Chemical Reaction Calculation

2015-09-01
2015-01-1905
Compression ratio of newly developed gasoline engines has been increased in order to improve fuel efficiency. But in-cylinder pressure around top dead center (TDC) before spark ignition timing is higher than expectation, because the low temperature oxidization (LTO) generates some heat. The overview of introduced calculation method taking account of the LTO heat of unburned gas, how in-cylinder pressure is revised and some knowledge of knocking prediction using chemical kinetics are shown in this paper.
Technical Paper

A Study on Practical Use of Diesel Combustion Calculation and Development of Automatic Optimizing Calculation System

2015-09-01
2015-01-1845
A KIVA code which is customized for passenger car's diesel engines is linked with an engine performance simulator and demonstrated with our optimizing calculation system. Aiming to fulfill our target calculation speed, the combustion model of the KIVA code is changed from a chemical reaction calculation method to a chemical equilibrium calculation method which is introduced a unique technique handling chemical species maps. Those maps contain equilibrium mole fraction data of chemical species according to equivalence ratio and temperature. Linking the KIVA code to the engine simulator helps to evaluate engine performance by indicated mean effective pressure (IMEP). The optimizing calculation system enables to obtain response surfaces. Observing the response surfaces, clear views of engine performance characteristics can be seen. The overview of this calculation system and some examples of the calculation are shown in this paper.
Technical Paper

Human Driving Behavior Analysis and Model Representation with Expertise Acquiring Process for Controller Rapid Prototyping

2011-04-12
2011-01-0051
Driving car means to control a vehicle according to a target path, e.g. road and speed, with some constraints. Human driving models have been proposed and applied for simulations. However, human control in driving has not been analyzed sufficiently comparing with that of machine control system in term of control theory. Input - output property with internal information processing is not easily measured and described. Response of human driving is not as quicker as that of machine controller but human can learn vehicle response to driving operation and predict target changes. Driving behavior of an expert driver and a beginner in an emission test cycle was measured and difference in target speed tracking was looked into with performance indices. The beginner's operation was less stable than that of the expert. Transfer function of the vehicle system was derived based on linearized model to investigate human driving behavior as a tracking controller in the system.
Technical Paper

Application of Hydraulic Body Mounts to Reduce the Freeway Hop Shake of Pickup Trucks

2009-05-19
2009-01-2126
When pickup trucks are driven on concrete paved freeways, freeway hop shake is a major complaint. Freeway hop shake occurs when the vehicle passes over the concrete joints of the freeway which impose in-phase harmonic road inputs. These road inputs excite vehicle modes that degrade ride comfort. The worst shake level occurs when the vehicle speed is such that the road input excites the vehicle 1st bending mode and/or the rear wheel hop mode. The hop and bending mode are very close in frequency. This phenomenon is called freeway hop shake. Automotive manufacturers are searching for ways to mitigate freeway hop shake. There are several ways to reduce the shake amplitude. This paper documents a new approach using hydraulic body mounts to reduce the shake. A full vehicle analytical model was used to determine the root cause of the freeway hop shake.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
Technical Paper

Multi-Disciplinary Robust Optimization for Performances of Noise & Vibration and Impact Hardness & Memory Shake

2009-04-20
2009-01-0341
This paper demonstrates the benefit of using simulation and robust optimization for the problem of balancing vehicle noise, vibration, and ride performance over road impacts. The psychophysics associated with perception of vehicle performance on an impact is complex because the occupants encounter both tactile and audible stimuli. Tactile impact vibration has multiple dimensions, such as impact hardness and memory shake. Audible impact sound also affects occupant perception of the vehicle quality. This paper uses multiple approaches to produce the similar, robust, optimized tuning strategies for impact performance. A Design for Six Sigma (DFSS) project was established to help identify a balanced, optimized solution. The CAE simulations were combined with software tools such as iSIGHT and internally developed Kriging software to identify response surfaces and find optimal tuning.
Technical Paper

Axiomatic Design for a Total Robust Development Process

2009-04-20
2009-01-0793
In this article, the authors illustrate the benefits of axiomatic design (AD) for robust optimization and how to integrate axiomatic design into a total robust design process. Similar to traditional robust design, the purpose of axiomatic design is to improve the probability of a design in meeting its functional targets at early concept generation stage. However, axiomatic design is not a standalone method or tool and it needs to be integrated with other tools to be effective in a total robust development process. A total robust development process includes: system design, parameter design, tolerance design, and tolerance specifications [1]. The authors developed a step-by-step procedure for axiomatic design practices in industrial applications for consistent and efficient deliverables. The authors also integrated axiomatic design with the CAD/CAE/statistical/visualization tools and methods to enhance the efficiency of a total robust development process.
Technical Paper

Observer Design for Fuel Reforming in HCCI Engines Using a UEGO Sensor

2009-04-20
2009-01-1132
Homogeneous Charge Compression Ignition (HCCI) combustion shows a high potential of reducing both fuel consumption and exhaust gas emissions. Many works have been devoted to extend the HCCI operation range in order to maximize its fuel economy benefit. Among them, fuel injection strategies that use fuel reforming to increase the cylinder charge temperature to facilitate HCCI combustion at low engine loads have been proposed. However, to estimate and control an optimal amount of fuel reforming in the cylinder of an HCCI engine proves to be challenging because the fuel reforming process depends on many engine variables. It is conceivable that the amount of fuel reforming can be estimated since it correlates with the combustion phasing which in turn can be measured using a cylinder pressure sensor.
Technical Paper

Concept and Implementation of a Robust HCCI Engine Controller

2009-04-20
2009-01-1131
General Motors recently demonstrated two driveable test vehicles powered by a Homogeneous Charge Compression Ignition (HCCI) engine. HCCI combustion has the potential of a significant fuel economy benefit with reduced after-treatment cost. However, the biggest challenge of realizing HCCI in vehicle applications is controlling the combustion process. Without a direct trigger mechanism for HCCI's flameless combustion, the in-cylinder mixture composition and temperature must be tightly controlled in order to achieve robust HCCI combustion. The control architecture and strategy that was implemented in the demo vehicles is presented in this paper. Both demo vehicles, one with automatic transmission and the other one with manual transmission, are powered by a 2.2-liter HCCI engine that features a central direct-injection system, variable valve lift on both intake and exhaust valves, dual electric camshaft phasers and individual cylinder pressure transducers.
Technical Paper

NOx Trap Catalyst Technologies to Attain 99.5% NOx Reduction Efficiency for Lean Burn Gasoline Engine Application

2009-04-20
2009-01-1077
For fuel economy improvement by lean-burn gasoline engines, extension of their lean operation range to higher loads is desirable as more fuel is consumed during acceleration. Urgently needed therefore is development of emission control systems having as high NOx conversion efficiency as three-way catalysts (TWC) even with more frequent lean operation. The authors conducted a study using catalysts loaded with potassium (K) as the only NOx trapping agent in an emission control system of a lean-burn gasoline engine.
Technical Paper

Robust Analysis of Clamp Load Loss in Aluminum Threads due to Thermal Cycling

2009-04-20
2009-01-0989
A DFSS study identified a new mechanism for clamp load loss in aluminum threads due to thermal cycling. In bolted joints tightened to yield, the difference in thermal expansion between the aluminum and steel threads can result in a loss of clamp load with each thermal cycle. This clamp load loss is significantly greater than the loss that can be explained by creep alone. A math model was created and used to conduct a robust analysis. This analysis led to an understanding of the design factors necessary to reduce the cyclic clamp load loss in the aluminum threads. This understanding was then used to create optimized design solutions that satisfy constraints common to powertrain applications. Estimations of clamp load loss due to thermal cycling from the math model will be presented. The estimates of the model will be compared to observed physical test data. A robust analysis, including S/N and mean effect summary will be presented.
Technical Paper

Closed Loop Pressure Control System Development for an Automatic Transmission

2009-04-20
2009-01-0951
This paper presents the development of a transmission closed loop pressure control system. The objective of this system is to improve transmission pressure control accuracy by employing closed-loop technology. The control system design includes both feed forward and feedback control. The feed forward control algorithm continuously learns solenoid P-I characteristics. The closed loop feedback control has a conventional PID control with multi-level gain selections for each control channel, as well as different operating points. To further improve the system performance, Robust Optimization is carried out to determine the optimal set of control parameters and controller hardware design factors. The optimized design is verified via an L18 experiment on spin dynamometer. The design is also tested on vehicle.
Technical Paper

Prediction of Brake System Performance during Race Track/High Energy Driving Conditions with Integrated Vehicle Dynamics and Neural-Network Subsystem Models

2009-04-20
2009-01-0860
In racetrack conditions, brake systems are subjected to extreme energy loads and energy load distributions. This can lead to very high friction surface temperatures, especially on the brake corner that operates, for a given track, with the most available traction and the highest energy loading. Individual brake corners can be stressed to the point of extreme fade and lining wear, and the resultant degradation in brake corner performance can affect the performance of the entire brake system, causing significant changes in pedal feel, brake balance, and brake lining life. It is therefore important in high performance brake system design to ensure favorable operating conditions for the selected brake corner components under the full range of conditions that the intended vehicle application will place them under. To address this task in an early design stage, it is helpful to use brake system modeling tools to analyze system performance.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Application of Principle Component Analysis to Low Speed Rear Impact - Design for Six Sigma Project at General Motors

2009-04-20
2009-01-1204
This study involves an application of Principal Component Analysis (PCA) conducted in support of a Design for Six Sigma (DFSS) project. Primary focus of the project is to optimize seat parameters that influence Low Speed Rear Impact (LSRI) whiplash performance. During the DFSS study, the project team identified a need to rank order critical design factors statistically and establish their contribution to LSRI performance. It is also required to develop a transfer function for the LSRI rating in terms of test response parameters that can be used for optimization. This statistical approach resulted in a reliable transfer function that can applied across all seat designs and enabled us to separate vital few parameters from several many.
Journal Article

Modeling and Simulation of Torsional Vibration of the Compliant Sprocket in Balance Chain Drive Systems

2008-06-23
2008-01-1529
The work presented in this paper outlines the development of a simulation model to aid in the design and development of a compliant sprocket for balancer drives. A design with dual-mass flywheel and a crank-mounted compliant chain sprocket greatly reduces interior noise levels due to chain meshing. However, experimental observations showed the compliant sprocket can enter into resonance and generate excessive vibration energy during startup. Special features are incorporated into the compliant sprocket design to absorb and dissipate this energy. Additional damper spring rate, high hysteresis and large motion angle that overlap the driving range may solve the problem during engine start-up period. This work develops a simulation model to help interpret the measured data and rank the effectiveness of the design alternatives. A Multibody dynamics system (MBS) model of the balancer chain drive has been developed, validated, and used to investigate the chain noise.
X