Refine Your Search

Topic

Author

Search Results

Journal Article

Summary and Progress of the Hydrogen ICE Truck Development Project

2009-06-15
2009-01-1922
A development project for a hydrogen internal combustion engine (ICE) system for trucks supporting Japanese freightage has been promoted as a candidate for use in future vehicles that meet ultra-low emission and anti-global warming targets. This project aims to develop a hydrogen ICE truck that can handle the same freight as existing trucks. The core development technologies for this project are a direct-injection (DI) hydrogen ICE system and a liquid hydrogen tank system which has a liquid hydrogen pump built-in. In the first phase of the project, efforts were made to develop the DI hydrogen ICE system. Over the past three years, the following results have been obtained: A high-pressure hydrogen gas direct injector developed for this project was applied to a single-cylinder hydrogen ICE and the indicated mean effective pressure (IMEP) corresponding to a power output of 147 kW in a 6-cylinder hydrogen ICE was confirmed.
Journal Article

An Experimental Study on Relationship between Lubricating Oil Consumption and Cylinder Bore Deformation in Conventional Gasoline Engine

2009-04-20
2009-01-0195
It is well known that lubricating oil consumption (LOC) is much affected by the cylinder bore deformation occurring within internal combustion engines. There are few analytical reports, however, of this relationship within internal combustion engines in operation. This study was aimed at clarifying the relationship between cylinder bore deformation and LOC, using a conventional in-line four-cylinder gasoline engine. The rotary piston method developed by the author et al. was used to measure the cylinder bore deformation of the engine’s cylinder #3 and cylinder #4. In addition, the sulfur tracer method was applied to measure LOC of each cylinder. LOC was also measured by changing ring tension with a view to taking up for discussion how piston ring conforms to cylinder, and how such conformability affects LOC. Their measured results were such that the cylinder bore deformation was small in the low engine load area and large in the high engine load area.
Technical Paper

Part 2: The Effects of Lubricating Oil Film Thickness Distribution on Gasoline Engine Piston Friction

2007-04-16
2007-01-1247
Due to increasing economic and environmental performance requirements of internal combustion engines, piston manufacturers now focus more on lower friction designs. One factor strongly influencing the friction behavior of pistons is the dynamic interaction between lubricating oil, cylinder bore and piston. Therefore, the dynamic effect of the oil film in the gap between the liner and piston has been studied, using a single cylinder engine equipped with a sapphire window. This single cylinder engine was also equipped with a floating liner, enabling real-time friction measurement, and directly linking the oil film behavior to friction performance of pistons.
Technical Paper

High-Performance Cast Aluminum Pistons for Highly Efficient Diesel Engines

2007-04-16
2007-01-1438
This paper introduces a new hypereutectic aluminum alloy for piston casting, an improved casting process and a new re-melting procedure. The resulting microstructures improve the fatigue performance of the piston combustion bowl region exposed to severe cyclic thermal and mechanical loading in modern diesel engine applications. It is shown how composition and material properties of the new alloy increase the material's fundamental properties, compared to an existing hypereutectic alloy. The new casting process minimizes the occurrence of fine oxide inclusions which helps to exploit the fundamental material strength. Finally the paper describes the combustion bowl re-melting process and gives engine validation results to illustrate its considerable influence on premature fatigue failure.
Technical Paper

Seamless Integration of Combustion Pressure Sensors into a Multi-Layer Steel Cylinder Head Gasket

2006-04-03
2006-01-1211
The interest in using combustion pressure in engine control systems has initiated development activities to integrate pressure sensors into existing engine components. Since cylinder head gasket contacts the combustion chamber of multiple cylinders, the ability to add pressure-sensing capability is of unique interest. Two viable multi-layer steel cylinder head gasket design approaches have been developed to fulfill this interest. These designs offer the full sealing performance of traditional multi-layer steel designs, but also include accurate pressure sensors packaged in a total gasket thickness realistic to modern engines.
Technical Paper

HCCI Combustion Characteristics of Hydrogen and Hydrogen-rich Natural Gas Reformate Supported by DME Supplement

2006-04-03
2006-01-0628
Hydrogen is expected to be a clean and energy-efficient fuel for the next generation of power sources because it is CO2-free and has excellent combustion characteristics. In this study, an attempt was made to apply Homogeneous Charge Compression Ignition (HCCI) combustion to hydrogen with the aim of achieving low oxides of nitrogen (NOx) emissions and high fuel economy with the assistance of the di-methyl-ether (DME) fuel supplement. As a result, HCCI combustion of hydrogen mixed with 25 vol% DME achieved approximately a 30% improvement in fuel economy compared with HCCI of pure DME and spark-ignited lean-burn combustion of pure hydrogen under almost zero NOx emissions and low hydrocarbon (HC) emissions. This is attributed to control of the combustion process to attain the optimum onset of combustion and to a reduction of cooling losses.
Technical Paper

Characteristics of Electrode Poisoning by Carbon Monoxide and/or Hydrogen Sulfide in the Anode Feed of Polymer Electrolyte Fuel Cells as Analyzed by AC Impedance Spectroscopy

2004-03-08
2004-01-1467
The results of this study make clear the characteristics of electrode performance deterioration in terms of cell voltage reduction in polymer electrolyte fuel cells (PEFCs) caused by the presence of certain quantities of carbon monoxide and/or hydrogen sulfide in the anode feed. AC impedance measurements of the anode and cathode potentials revealed that both electrode potentials showed deterioration in the presence of each type of poisoning gas. This suggests that the poisoning gases permeated the electrolyte membrane and transferred to the cathode, causing performance deterioration by poisoning the catalyst. In addition, AC impedance measurements indicated that the presence of hydrogen sulfide in the anode feed increased the membrane impedance, thus implying some poisoning effect even on the electrolyte membrane.
Technical Paper

Reduction of Cooling Loss in Hydrogen Combustion by Direct Injection Stratified Charge

2003-10-27
2003-01-3094
Hydrogen can be readily used in spark-ignition engines as a clean alternative to fossil fuels. However, a larger burning velocity and a shorter quenching distance for hydrogen as compared with hydrocarbons bring a larger cooling loss from burning gas to the combustion-chamber wall. Because of the large cooling loss, the thermal efficiency of a hydrogen-fueled engine is sometimes lower than that of a conventionally fueled engine. Therefore, the reduction of the cooling loss is very important for improving the thermal efficiency in hydrogen-combustion engines. On the other hand, the direct-injection stratified charge can suppress knocking in spark-ignition engines at near stoichiometric overall mixture conditions. Because this is attributed to a leaner end gas, the stratification can lead to a lowered temperature of burning gas around the wall and a reduced cooling loss.
Technical Paper

Probabilistic Analysis for the Performance Characteristics of Engine Bearings due to Variability in Bearing Properties

2003-05-05
2003-01-1733
This paper presents the development of surrogate models (metamodels) for evaluating the bearing performance in an internal combustion engine without performing time consuming analyses. The metamodels are developed based on results from actual simulation solvers computed at a limited number of sample points, which sample the design space. A finite difference bearing solver is employed in this paper for generating information necessary to construct the metamodels. An optimal symmetric Latin hypercube algorithm is utilized for identifying the sampling points based on the number and the range of the variables that are considered to vary in the design space. The development of the metamodels is validated by comparing results from the metamodels with results from the actual bearing performance solver over a large number of evaluation points. Once the metamodels are established they are employed for performing probabilistic analyses.
Technical Paper

Structural Vibration of an Engine Block and a Rotating Crankshaft Coupled Through Elastohydrodynamic Bearings

2003-05-05
2003-01-1724
A comprehensive formulation is presented for the dynamics of a rotating flexible crankshaft coupled with the dynamics of an engine block through a finite difference elastohydrodynamic main bearing lubrication algorithm. The coupling is based on detailed equilibrium conditions at the bearings. The component mode synthesis is employed for modeling the crankshaft and block dynamic behavior. A specialized algorithm for coupling the rigid and flexible body dynamics of the crankshaft within the framework of the component mode synthesis has been developed. A finite difference lubrication algorithm is used for computing the oil film elastohydrodynamic characteristics. A computationally accurate and efficient mapping algorithm has been developed for transferring information between a high - density computational grid for the elastohydrodynamic bearing solver and a low - density structural grid utilized in computing the crankshaft and block structural dynamic response.
Technical Paper

Diesel Exhaust Simulator: Design and Application to Plasma Discharge Testing

2003-03-03
2003-01-1184
A diesel fuel and air diffusion flame burner system has been designed for laboratory simulation of diesel exhaust gas. The system consists of mass flow controllers and a fuel pump, and employs several unique design and construction features. It produces particulate emissions with size, number distribution, and morphology similar to diesel exhaust. At the same time, it generates NOx emissions and HC similar to diesel. The system has been applied to test plasma discharges. Different design discharge devices have been tested, with results indicating the importance of testing devices with soot and moisture. Both packed bed reactor and flat plate dielectric barrier discharge systems remove some soot from the gas, but the designs tested are susceptible to soot fouling and related electrical failures. The burner is simple and stable, and is suitable for development and aging of plasma and catalysts systems in the laboratory environment.
Technical Paper

Development of a Technique to Predict Oil Consumption with Consideration for Cylinder Deformation - Prediction of Ring Oil Film Thickness and Amount of Oil Passing Across Running Surface under Cylinder Deformation -

2003-03-03
2003-01-0982
Although various factors affecting oil consumption of an internal combustion engine can be considered, a technique to predict the amount of oil consumed within a cylinder that passes across a running surface of a ring was developed in this study. In order to predict the effect of cylinder deformation on oil consumption, a simple and easy technique to calculate the oil film thickness in deformed cylinder was proposed. For this technique, the piston ring was assumed to be a straight beam, and the beam bends with ring tension, gas pressure, and oil film pressure. From the calculated oil film thickness, amount of oil passing across the running surface of the TOP ring and into the combustion chamber was calculated. The calculated results were then compared to the oil film thickness of the ring and oil consumption measured during engine operation, and their validity was confirmed.
Technical Paper

Measurement of Bore Distortion in a Firing Engine

2002-03-04
2002-01-0485
Bore distortion was measured in a 2.0 liter in-line 4-cylinder gasoline engine, chosen because its siamesed bore design was expected to incur high bore distortion. The method adopted was to install 10 Micro-Epsilon eddy-current transducers in an invar carrier attached to the under crown of the piston. The transducers emerged through apertures in the piston at second ring level where they were in close proximity to the bore surface. A 2-beam linkage system was used to carry miniature co-axial cables to the engine exterior. Measurements were recorded at various speeds and loads up to 6000 rev/min. Maximum bore distortion was 86 microns, arising from clamping loads, thermal effects and combustion pressure. The head bolts spaced around the bore gave rise to fourth order distortion, but the dominant influence was thermal loading which induced second order distortion, attributed directly to the siamesed bore design. The combustion pressure proved to have the least influence.
Technical Paper

Analysis of Degree of Constant Volume and Cooling Loss in a Hydrogen Fuelled SI Engine

2001-09-24
2001-01-3561
This study analyzes the factors influencing the thermal efficiency of a homogeneous charge spark-injection (SI) engine fuelled with hydrogen, focusing on the degree of constant volume and cooling loss. The cooling loss from the burning gas to the cylinder walls is quantitatively evaluated by analyzing the cylinder pressure diagram and exhaust gas composition. The degree of constant volume burning and constant volume cooling are also obtained by fitting the Wiebe function to the rate of heat release calculated using the cylinder pressure diagram. A comparison of combustion and cooling characteristics of hydrogen and methane combustion reveals that cooling loss in hydrogen combustion is higher than that of methane combustion due to the short quenching distance and rapid burning velocity during hydrogen combustion. It is also suggested that the high cooling loss observed during hydrogen combustion reduces thermal efficiency.
Technical Paper

Thermodynamic Characteristics of Premixed Compression Ignition Combustions

2001-05-07
2001-01-1891
Thermodynamic characteristics of premixed compression ignition combustions were clarified quantitatively by heat balance estimation. Heat balance was calculated from temperature, mole fractions of intake and exhaust gases, mass and properties of fuels. Heat balance estimation was conducted for three types of combustion; a conventional diesel combustion, a homogeneous charge compression ignition (HCCI) combustion; fuel is provided and mixed with air in an intake pipe in this case, and an extremely early injection type PREmixed lean DIesel Combustion (PREDIC). The results show that EGR should be applied for premixed compression ignition combustion to complete combustion at lower load conditions and to control ignition timing at higher load conditions. With an application of EGR, both HCCI and PREDIC showed low heat loss characteristics at lower load conditions up to 1/2 load.
Technical Paper

Combustion Characteristics of H2-CO-CO2 Mixture in an IC Engine

2001-03-05
2001-01-0252
Reformed fuel from hydrocarbons or alcohol mainly consists of hydrogen, carbon monoxide and carbon dioxide. The composition of the reformed fuel can be varied to some extent with a combination of a thermal decomposition reaction and a water gas shift reaction. Methanol is known to decompose at a relatively low temperature. An application of the methanol reforming system to an internal combustion engine enables an exhaust heat recovery to increase the heating value of the reformed fuel. This research analyzed characteristics of combustion, exhaust emissions and cooling loss in an internal combustion engine fueled with several composition of model gases for methanol reformed fuels which consist of hydrogen, carbon monoxide and carbon dioxide. Experiments were made with both a bottom view type optical access single cylinder research engine and a constant volume combustion chamber.
Technical Paper

A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine

2000-10-16
2000-01-2792
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
Technical Paper

Measurement of Instantaneous Heat Flux Flowing Into Metallic and Ceramic Combustion Chamber Walls

2000-06-19
2000-01-1815
Accurate measurements of combustion gas temperature and the coefficient of heat transfer between the gas and the combustion chamber wall of internal combustion engine in cyclic operations are difficult at present. Hence the only method available for determination of states of thermal load and heat loss to the combustion chamber wall in a cycle is to measure the instantaneous temperature on the combustion chamber wall surface accurately and precisely using proper thin-film thermocouples, then to calculate the instantanenous heat flux flowing into the wall surface by means of numerical analysis. However, it is necessary to pay adequate attention to the effects of thermophysical properties of the thermocouple materials on the measured values, since any thermocouple consists of several kinds of materials which are different from those of portions to be measured.
Technical Paper

A Study of Abnormal Wear in Power Cylinder of Diesel Engine with EGR - Wear Mechanism of Soot Contaminated in Lubricating Oil

2000-03-06
2000-01-0925
Exhaust-gas recirculation (EGR) causes the piston ring and cylinder liners of a diesel engine to suffer abnormal wear. The present study aimed at making clear the mechanism of wear which is induced by soot in the EGR gas. The piston ring has been chrome plated and the cylinder was made of boron steadite cast iron. Detailed observations of the ring sliding surfaces and that of the wear debris contained in lubricating oil were carried out. As a result, it was found that the wear of the top ring sliding surfaces identify abrasive wear without respect to the presence of EGR by steadite on the cylinder liner sliding surface. In addition, it is confirmed in a cutting test that soot mixed lubricating oil improved in performance as cutting oil. Based on these results, we proposed the hypothesis in the present study that ring wear is accelerated at EGR because abrasive wear increases due to a lot of soot mixed into lubricating oil improving the performance of lubricating oil as cutting oil.
Technical Paper

Research and Development of a Hydrogen-Fueled Engine for Hybrid Electric Vehicles

2000-03-06
2000-01-0993
Hybrid electric vehicle with internal combustion engine fueled with hydrogen can be a competitor to the fuel cell electric vehicle that is thought to be the ultimately clean and efficient vehicle. The objective in this research is to pursue higher thermal efficiency and lower exhaust emissions in a hydrogen-fueled engine for the series type hybrid vehicle system. Influences of compression ratio, surface / volume ratio of combustion chamber, and boost pressure on thermal efficiency and exhaust emissions were analyzed. Results showed that reduction of the surface / volume ratio by increased cylinder bore was effective to improve indicated thermal efficiency, and it was possible to achieve 44% of indicated thermal efficiency. However, brake thermal efficiency resulted in 35.5%. It is considered that an improved mechanical efficiency by an optimized engine design could increase the brake thermal efficiency largely.
X