Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Fundamental Ice Crystal Accretion Physics Studies

2011-06-13
2011-38-0018
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations.
Technical Paper

Effects of Relative Humidity on the Adsorption of Dichloromethane by Carbosieve SIII

2007-07-09
2007-01-3249
Carbosieve SIII was used to filter dichloromethane (DCM) from a simulated spacecraft gas stream. This adsorbent was tested as a possible commercial-off-the-shelf (COTS) filtration solution to controlling spacecraft air quality. DCM is a halocarbon commonly used in manufacturing for cleaning and degreasing and is a typical component of equipment offgassing in spacecraft. The performance of the filter was measured in dry and humid atmospheres. A known concentration of DCM was passed through the adsorbent at a known flow rate. The adsorbent removed dichloromethane until it reached the breakthrough volume. Carbosieve SIII exposed to dry atmospheric conditions adsorbed more DCM than when exposed to humid air. Carbosieve SIII is a useful thermally regenerated adsorbent for filtering DCM from spacecraft cabin air. However, in humid environments the gas passes through the filter sooner due to co-adsorption of additional water vapor from the atmosphere.
Technical Paper

Testbed for Determining the Filtering Capacities of COTS Adsorbents

2007-07-09
2007-01-3137
A lab-scale testbed for screening and characterizing the chemical specificity of commercial “off-the-shelf” (COTS) polymer adsorbents was built and tested. COTS polymer adsorbents are suitable candidates for future trace contaminant (TC) control technologies. Regenerable adsorbents could reduce overall TC control system mass and volume by minimizing the amounts of consumables to be resupplied and stored. However, the chemical specificity of these COTS adsorbents for non-methane volatile organic compounds (NMVOCs) (e.g., methanol, ethanol, dichloromethane, acetone, etc) commonly found in spacecraft is unknown. Furthermore, the effect of humidity on their filtering capacity is not well characterized. The testbed, composed of a humidifier, an incubator, and a gas generator, delivers NMVOC gas streams to conditioned sorbent tubes.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

2006-07-17
2006-01-2192
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
Technical Paper

NASA's Advanced Life Support Technology Program

1994-06-01
941290
For reasons of safety as well as cost, increasingly lengthy space missions at unprecedented distances from Earth in the 21st century will require reductions in consumables and increases in the autonomy of spacecraft life support systems. Advanced life support technologies can increase mission productivity and enhance science yield by achieving reductions in the mass, volume, and power required to support human needs for long periods of time in sterile and hostile environments. Current investment in developing advanced life support systems for orbital research facilities will increase the productivity of these relatively near-term missions, while contributing to the technology base necessary for future human exploration missions.
Technical Paper

Power System Monitoring and Source Control of the Space Station Freedom DC-Power System Testbed

1992-08-03
929300
Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation.
Technical Paper

The Past as Prologue: A Look at Historical Flight Qualifications for Space Nuclear Systems

1992-08-03
929342
Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to “flight qualify” a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.
X