Refine Your Search



Search Results

Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Journal Article

Random Variable Estimation and Model Calibration in the Presence of Epistemic and Aleatory Uncertainties

This article presents strategies for evaluating the mean, variance, and failure probability of a response variable given measurements subject to both epistemic and aleatory uncertainties. We focus on a case in which standard sensor calibration techniques cannot be used to eliminate measurement error since the uncertainties affecting the metrology system depend upon the measurement itself (e.g., the sensor bias is not constant and the measurement noise is colored). To this end, we first characterize all possible realizations of the true response that might have led to each of such measurements. This process yields a surrogate of the data for the unobservable true response taking the form of a random variable. Each of these variables, called a Random Datum Model (RDM), is manufactured according to a measurement and to the underlying structure of the uncertainty.
Technical Paper

NASA's Fundamental Aeronautics Subsonic Fixed Wing Project: Generation N+3 Technology Portfolio

Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets. The NASA Fundamental Aeronautics Subsonic Fixed Wing (SFW) Project addresses the comprehensive challenge of enabling revolutionary energy-efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies, and the development of unconventional aircraft systems, offer the potential to achieve these improvements.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

Nowcasting Aircraft Icing Conditions in the Presence of Multilayered Clouds Using Meteorological Satellite Data

Cloud properties retrieved from satellite data are used to diagnose aircraft icing threat in single layer and multilayered ice-over-liquid clouds. The algorithms are being applied in real time to the Geostationary Operational Environmental Satellite (GOES) data over the CONUS with multilayer data available over the eastern CONUS. METEOSAT data are also used to retrieve icing conditions over western Europe. The icing algorithm's methodology and validation are discussed along with future enhancements and plans. The icing risk product is available in image and digital formats on NASA Langley ‘s Cloud and Radiation Products web site,
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

Thermal Model Correlation for Mars Reconnaissance Orbiter

The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun.
Technical Paper

Thermal Modeling of the Mars Reconnaissance Orbiter 's Solar Panel and Instruments During Aerobraking

The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft's design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, (from a temperature limit standpoint), thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.
Technical Paper

The Third Wave of Aeronautics: On-Demand Mobility

Aviation has experienced one hundred years of dynamic growth and change, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. The first fifty years of aviation was a very chaotic, rapid evolutionary process involving disruptive technologies that required frequent adaptation. The second fifty years produced a stable evolutionary optimization of services based on achieving an objective function of decreased costs. In the third wave of aeronautics over the next fifty years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient, and environmentally fare and friendly system.
Technical Paper

21st Century Lunar Exploration: Advanced Radiation Exposure Assessment

On January 14, 2004 President George W Bush outlined a new vision for NASA that has humans venturing back to the moon by 2020. With this ambitious goal, new tools and models have been developed to help define and predict the amount of space radiation astronauts will be exposed to during transit and habitation on the moon. A representative scenario is used that includes a trajectory from LEO to a Lunar Base, and simplified CAD models for the transit and habitat structures. For this study galactic cosmic rays, solar proton events, and trapped electron and proton environments are simulated using new dynamic environment models to generate energetic electron, and light and heavy ion fluences. Detailed calculations are presented to assess the human exposure for transit segments and surface stays.
Technical Paper

Spacesuit Radiation Shield Design Methods

Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Steps Toward Developing a Multi-layer Green’s Function Code for Ion Beam Transport

Recently, a new Green’s function code (GRNTRN) for simulation of HZE ion beams in the laboratory setting has been developed. Once fully developed and experimentally verified, GRNTRN will be a great asset in assessing radiation exposures in both the laboratory and space settings. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple elastic scattering, and nuclear reactive processes with use of Neumann-series expansions with non-perturbative corrections. The code contains energy loss with straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and down shifts. Previous reports show that the new code accurately models the transport of ion beams through a single slab of material. Current research efforts are focused on enabling the code to handle multiple layers of material and the present paper reports on progress made towards that end.
Technical Paper

An Improved Green’s Function Code for HZE Ion Transport

A new Green’s function code (GRNTRN) capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Recent publications have focused on code validation in the laboratory environment and have shown that the code predicts energy loss spectra accurately as measured by solid-state detectors in ion beam experiments. In this paper emphasis is placed on code validation with space boundary conditions.
Technical Paper

Radiation Environment Modeling for the Planet Mars

In view of manned missions targeted to Mars, for which radiation exposure is one of the greatest challenges to be tackled, it is of fundamental importance to have available a tool, which allows the determination of the particle flux and spectra at any time at any point of the Martian surface. With this goal in mind, a new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) has been developed. Primary particle environments computed for Martian conditions are transported within the Mars atmosphere, with temporal properties modeled with variable timescales, down to the surface, with topography and backscattering patterns taken into account. The atmospheric chemical and isotopic composition has been modeled over results from the in-situ Viking Lander measurements for both major and minor components.
Technical Paper

Performance Characterization of a Lithium-Ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed.
Technical Paper

Simulation Study of a Commercial Transport Airplane During Stall and Post-Stall Flight

As part of NASA’s Aviation Safety and Security Program, a simulation study of a twin-jet transport aircraft crew training simulation was conducted to address fidelity for upset or loss-of-control flight conditions. Piloted simulation studies were conducted to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted in a flaps-up configuration and covered the approach-to-stall, stall and post-stall flight regimes. Qualitative pilot comments and preliminary comparison with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the significant unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified.
Technical Paper

Some New Results in the Green’s Function Method for Ion Beam Transport

The development of a Green’s function approach to ion transport greatly facilitates the modeling of laboratory radiation environments and allows for the direct testing of transport approximations of material transmission properties. Using this approach radiation investigators at the NASA Langley Research Center have established that simple solutions can be found for HZE ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift and dispersion associated with nuclear events. In a more recent publication it was shown how these effects can be incorporated into the multiple fragmentation perturbation series. Analytical approximations for the first two perturbation terms were presented and the third term was evaluated numerically.
Technical Paper

Biologically Inspired Micro-Flight Research

Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed-wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.
Technical Paper

Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.